Смесительный узел для теплого пола: выбор и настройка

Смесительный узел для теплого пола: выбор и настройка

Водяной «теплый» пол является низкотемпературной системой обогрева общей линии, по которой теплоноситель подается к высокотемпературным радиаторам. Поэтому, появляется дополнительный элемент – смесительный узел для теплого пола, предназначенный для понижения температуры циркулирующей воды. Иначе, чрезмерный нагрев напольного покрытия вызовет дискомфорт при эксплуатации, стяжки будут испытывать критические нагрузки, что снизит ресурс конструкции.

Назначение смесительного узла для теплого пола

Стандартной температурой теплоносителя для радиаторов отопления на выходе из котла является 95 – 90˚С. реже применяются 85 – 70 градусные регистры обогрева. По действующим СНиП, СанПиН комфортной для эксплуатации напольного покрытия считается температура 50 – 35˚С. Поэтому, воду из котла нельзя пускать в напольные контуры напрямую. Вопрос ее понижения является актуальным для водяных систем любого типа. Обойтись без узла смешения можно, лишь при использовании теплового насоса. Наличие любого высокотемпературного потребителя (душ, ванна, настенные радиаторы) потребует установки узла подмеса.

Внешний вид смесительного узла для теплого пола

Смесительный узел для теплого пола монтируется на стене либо в нише в том же помещении, где проложены обогревательные контуры. Существуют модификации с двух, трех ходовыми клапанами, прозванными в народе «гребенками» за схожую форму. Нюансы подключения делают монтаж недоступным для домашнего мастера, требуется температурный расчет, поэтому, заказ услуги в специализированной компании предпочтительнее для увеличения эксплуатационного ресурса, исключения ошибок.

Схема работы узла подмеса

Кипяток из котла доходит до помещения с обогревательными контурами внутри стяжки, упирается в смесительный узел для теплого пола, где термостатом измеряется температура теплоносителя. При слишком высоком значении открывается клапан обратки, происходит подмес в кипяток жидкости, отдавшей тепловую энергию при прохождении по трубам одного из контуров. При достижении температуры, заданной в настройках, открывается основной клапан, вода поступает в систему. Существует две основных схемы включения узла в систему, выбор зависит от эксплуатационных условий в конкретном помещении.

Схема работы смесительного узла

Помимо регулирования температуры коллекторная «гребенка» обеспечивает нормальную циркуляцию теплоносителя. Узел состоит из следующих элементов:

  • клапан – обеспечивает контроль температуры на выходе, периодически подмешивает холодную воду из обратки
  • насос – необходим для циркуляции с заданными параметрами для обеспечения равномерного нагрева всей поверхности напольного покрытия
  • байпас – монтируется опционально, защищает оборудование от перегрузок
  • воздуходатчики – контролируют содержание в теплоносителе O2
  • клапаны – отсекающий, дренажный, стабилизируют работу контуров

Для увеличения художественной ценности интерьеров коллекторный узел может выноситься в бойлерную, коллекторный шкаф в отдельном помещении. Второй вариант оптимален при наличии теплого пола в нескольких комнатах коттеджа/квартиры. Наиболее популярны трех, двух ходовые клапаны в различных схемах монтажа.

Двухходовой клапан в смесительном узле

Основным отличием схемы коллекторной «гребенки»с двухходовым клапаном является непрерывная подача из обратки без отсекающей арматуры. Смесительный узел для теплого пола периодически подмешивает в нее кипяток при остывании теплоносителя ниже заданного уровня.

Двухходовой клапан

Клапан называется питающим, в него встроен жидкостной датчик-термостат, отсекающий/добавляющий горячую воду по мере необходимости. Благодаря стабильной температуре по периметру конструкция имеет высокий эксплуатационный ресурс:

  • резкие скачки сглаживаются малой пропускной способностью клапана
  • диапазон регулирования температуры незначительный
  • схема отлично зарекомендовала себя на практике

Единственным ограничением является чрезмерная величина контуров. При обогреве больше 200 квадратов падение температуры обратки слишком значительное, подмешивание кипятка становится не эффективным.

Трехходовой клапан в смесительном узле

Универсальным оборудованием считается смесительный узел для теплого пола с трехходовым клапаном.

В этом устройстве используется другая конструкция:

  • кипяток смешивается с обраткой внутри корпуса
  • функция питающего клапана объединяется с байпасной балансировкой
  • в кран встроена заслонка с регулируемым положением

Этот тип регулирующей арматуры чаще оснащается погодозависимыми контроллерами, термостатами, сервоприводами. Она оптимально подходит для множественных контуров, обогревающих больше 200 квадратов.

Недостатки трехходовой конструкции – возможность впуска горячего теплоносителя, наличие избыточного давления, обеспечивающего резкие скачки. Это неблагоприятно для водяных труб, снижается ресурс конструкции. Точная регулировка температуры осложняется увеличенной пропускной способностью. Незначительный поворот заслонки приводит к изменению температуры напольного покрытия на 5 – 3˚С.

Погодозависимая арматура монтируется для саморегулирования обогревательных контуров по уличной температуре. При сильных заморозках теплопотери сквозь несущие конструкции, стеклопакеты увеличиваются, требуется интенсивный обогрев. Повышается расход кипятка, температура теплоносителя.

Схема включения смесительного узла

Изделия заводской готовности, прошедшие стендовую опрессовку, имеющие необходимые документы о произведенных гидроиспытаниях, являются оптимальным вариантом для монтажа внутридомовых систем обогрева. Узел имеет компактный вид, гарантию герметичности резьбовых, сварных соединений, эргономичное расположение органов управления. Для удобства монтажа промышленность выпускает щиты, шкафы для маскировки оборудования с сохранением доступа к регулирующей арматуре. Пример схемы включения «гребенки» приведен ниже:

Схема включения смесительного узла для теплого пола

Теплоноситель из трубы подачи, обратки может смешиваться в каждом отводе либо перед коллектором. Оптимальная схема рассчитывается специалистами, домашнему мастеру для этого обычно не хватает профессионального образования, практики.

Настройка узла подмеса

После монтажа коллектора производится его настройка со снятым сервоприводом, термоголовкой. Для регулировки температуры поверхности пола необходимо выполнить последовательность действий:

  • установка max перепускного клапана – его переводят на 0,6 бар, при срабатывании этого узла при настройки результат будет неправильным
  • расчет балансировочного клапана – для этого используются значения температур обратки, подающей линии, на выходе из котла, коэффициент 0,9 (формула пропускной способности К = 0,9 *[(tk – to/tp – to) – 1])
  • настройка насоса – вычисляется расход кипятка, потери давления контуров либо выставляется минимальная подача, по мере необходимости скорость добавляется
  • балансировка веток – регуляторы полностью открываются, плавно закрываются до нужного положения

Регулировка узла подмешевания

На последнем этапе останется увязать расход узла подмешивания с прочими отопительными приборами, отрегулировав положение закрытого на первом этапе балансировочного клапана. Монтаж расходомеров значительно облегчает точную настройку всех узлов. Значение обработки перепускного клапана выставляется на 10 – 7% ниже максимального давления насоса.

Устройство и работа насосно-смесительного узла теплого пола

Системы водяного подогрева полов (вторичного контура отопления, теплые полы — ТП), используемые совместно высокотемпературным радиаторным отоплением (первичным контуром), нуждаются в приведении параметров теплоносителя к определенным характеристикам. В первую очередь, это касается гидравлической и температурной увязки контуров обоих типов. Ведь важно обеспечить как полноценное снабжение теплоносителем в требуемых объемах коммуникаций ТП, так и не допустить перегрева вторичной низкотемпературной системы. Эти задачи возлагаются на насосно-смесительный узел теплого пола (НСУ). Они решаются посредством сбалансированной автоматической работы запорно-регулирующей арматуры и насосного агрегата, обеспечивающей дозированный подмес теплоносителя из обратной линии.

Рисунок 1

Требования к температуре теплононосителя

НСУ теплого пола является достаточно сложным комплектом оборудования, от грамотной сборки и настройки которого во многом зависит правильность функционирования всей тепловой установки. Например, если котел спроектирован на подачу теплоносителя 70-90 0 С в радиаторы, то, в параллельно работающих в этих же помещениях контурах напольного обогрева, температура циркулирующей жидкости допускается не выше 45-50 0 С (max 55 0 С). Точные температурные параметры выводятся путем инженерных расчетов системы теплого пола. Они призваны обеспечить подготовку воды в НСУ таким образом, чтобы прогрев напольных поверхностей, с учетом структуры и материала их покрытий, не превышал:

  • в помещения с долговременным пребыванием людей (офисах, жилых) – 29 0 С;
  • во вспомогательных помещениях (кладовых, коридорах, гардеробных) – 30 0 С;
  • в санузлах, ванных комнатах, бассейнах – 32 0 С.

Кроме того, настройка смесительного узла будет выполнена наиболее оптимально, если удастся добиться перепада температур между подачей и обраткой ТП 5-15 0 С. Уменьшение теплового градиента (Δt) требует наращивания расхода теплоносителя, как следствие роста скорости его циркуляции, которая приводит к гидравлическим потерям. Высокий же градиент температур уже ощущается тактильно, как разница в нагреве поверхности напольного покрытия, что вызывает определенный дискомфорт.

Рисунок 2

Типовые схемы насосно-смесительных узлов

В зависимости от способ включения циркуляционного насоса различают следующие схемы НСУ:

  • последовательную – рис. 2а;
  • параллельную – рис. 2б;
  • комбинированную.

При этом основными считаются первые две, а последняя схема, соответственно, представляет их гибридный вариант.

Включенный последовательно насос эксплуатируется только для подготовки теплоносителя и его циркуляции в контурах теплого пола. Подобная схема, хотя и требует использования двух раздельных перекачивающих агрегатов (для первичного и вторичного контуров), однако, отличается лучшими, чем параллельная, технологическими показателями. В профессионально изготовленных системах ТП, зачастую, сборку НСУ осуществляют с последовательным включением насоса. При этом следует учитывать, что эффективность работы такой сборки существенно зависит от правильности её расчетов и настройки.

Преимущество параллельного подключения насоса заключается в возможности использования всего одного агрегата для обеспечения циркуляции теплоносителя в первичном и вторичном контурах. С одной стороны, это упрощает сборку, а с другой – требует установки более мощного перекачивающего оборудования. Если изготовление смешивающего узла для небольшой бытовой системы выполняется своими руками, то выбрав параллельную компоновку, легче избежать критических ошибок, которые могут негативно отразиться на работе водяного теплого пола.

Как в параллельных, так и в последовательных сборках НСУ практикуется использование термостатических двухходовых (рис. 2-5 и 7) или трехходовых (рис. 1, 8 и 9) клапанов. Схемы с термостатами первого типа рекомендуется применять для помещений с площадями ТП в несколько десятков квадратных метров. Поэтому для организации напольного отопления в среднестатистической типовой квартире они вполне подходят. Смешивание теплоносителя в них осуществляется после двухходового клапана непосредственно в циркуляционном потоке системы теплого пола.

Трехходовые термостаты сами являются смешивающими устройствами. Внутри их корпусов происходит регулируемый подмес теплоносителя из первичного контура к циркулирующему потоку из системы ТП. Трехходовая термостатическая запорно-регулирующая арматура рекомендуется для установки на крупных отапливаемых площадях, измеряемой сотнями квадратных метров.

Комплектация смесительного узла

Добиться обеспечения функциональности системы ТП возможно, только имея четкое представление о строении НСУ, практическом назначении его основных и вспомогательных элементов. Устройство и работу типового узла удобно будет разобрать на примере схемы с последовательным включением насосного агрегата и двухходовым клапаном-термостатом (рис. 3). Указанную компоновку имеет смесительный узел для теплого пола Valtec (рис.5), реализуемый в торговой сети в виде готового комплекта оборудования.

Рисунок 3

Основные функциональные элементы НСУ Valtec

К ним относятся:

  • циркуляционный насос;
  • клапан балансировочно-запорный (первичного контура);
  • клапан балансировочный (вторичного контура);
  • байпасный клапан (перепускной).

Насос (рис. 3 и 5, поз.3)

Инициирует подачу и возврат теплоносителя через узлы и петли ТП. Применяется циркуляционное оборудование аналогичное тому, которое используется в первичных контурах системы отопления. Величин его главных рабочих параметров (давление и производительность) должно хватать на преодоление гидросопротивлений в трубопроводах, чтобы обеспечивать циркуляцию теплоносителя с требуемой скоростью и в заданных объемах.

Балансирный клапан первичного контура (рис. 3 и 5, поз.8)

Отвечает за поступающие объемы теплоносителя, подпитывающего систему теплого пола из первичного высокотемпературного контура отопления (Т1, Т2). Балансировка потока жидкости осуществляется изменением пропускной способности клапана. Регулировка балансирного клапана выполняется путем вращения его настроечного винта с головкой под ключ-шестигранник, который закрывается защитным колпачком. Процесс также синхронизируется с работой клапана-термостата (поз. 1), управляемого выносным погружным датчиком (поз. 1а). Чувствительный элемент датчика монтируется в резьбовую гильзу (поз. 4).

Балансирный клапан вторичного контура (рис. 3 и 5, поз.2)

Его настройка зависит от площади подогреваемой поверхности напольного покрытия. Открытие/закрытие регулирующего устройства влияет на изменение пропорции соотношения объемов теплоносителей из обратки ТП (Т21) и подачи первичной системы отопления (Т1). Прикрытие балансировочным клапаном оборотного потока из вторичного контура способствует более интенсивному поступлению разогретой жидкости от теплогенератора (котла). Таким образом, теплопроизводительность ТП увеличивается.

Установка степени открытия клапана (рис. 4) осуществляется по шкале на его оголовке (рис. 5, поз. 2), где указана его пропускная способность в м 3 /час. После завершения настройки шкала от случайного смещения фиксируется винтом 2а.

Рисунок 4

Байпасный клапан (рис. 3 и 5, поз.7)

Совместно с перепускным патрубком (поз. 12) обеспечивает безаварийную работу циркуляционного насоса в режиме подпора, когда циркуляция через петли ТП прекращается полностью либо становится недостаточной. Подобный режим может быть вызван перекрытием контуров на гребенке посредством ручных вентилей либо же работой их клапанов с простым термостатическими или автоматическим управлением. В результате сопротивление течению жидкости, как и нагрузка на оборудование, увеличиваются. При определенном перепаде давления, величина которого настраивается по шкале перепускного клапана (градуировка в бар), он приоткрывается. Теплоноситель либо часть его потока начинает перетекать по байпасному патрубку, замыкая через насос малый цикл циркуляции. Таким образом, исключается аварийная перегрузка и обеспечивается сохранность оборудования.

Вспомогательные элементы

Обеспечивать, поддерживать и контролировать работу НСУ также помогают различные вспомогательные и сервисные устройства:

  • термометры – поз. 5;
  • воздухоотводчики поплавкого типа (автоматические) – поз. 9;
  • дренажные клапаны – поз. 10;
  • обратный шаровый клапан – поз. 11.

Рисунок 5

Как все работает?

Подача теплоносителя в заданном диапазоне температур на коллектор теплого пола обеспечивается настройками узла подмеса. Главный цикл оборота жидкости внутри системы ТП складывается из циклов циркуляции в каждой из веток. При этом НСУ подмешивает горячий теплоноситель из первичного контура отопления в объемах необходимых для восполнения суммарных теплопотерь на отопление всех помещений. То есть, чем интенсивней происходит охлаждение теплоносителя в ветках теплого пола, тем большее его количество добавляется во внутренний оборот всего вторичного контура. Объем обновляемой горячей жидкости изменяется автоматически – от максимального, разово установленного настройками балансирного клапана 8 (рис. 3 и 5), до полного перекрытия. В диапазоне от максимума до минимума потока регулировка осуществляется термостатическим клапаном 1, который получает управляющие импульсы от своего выносного датчика (рис. 5, поз. 1а), контролирующего температуру потока Т11 на подающий коллектор.

Важно! Непосредственно на работу системы теплого оказывают влияние регулирующие функции термостатического клапана 1. В свою очередь, балансировочный клапан 8 служит лишь для согласования суммарных потерь давления во вторичных контурах ТП с потерями давления в отопительных приборах первичного контура. При этом аналогичной настройке по потерям давления должны подвергаться все потребители в первичной системе, чтобы распределение тепловой энергии происходило в соответствие с их запросами, а не по пути наименьшего гидравлического сопротивления. Важность и степень подобной балансировки наглядно показаны на рисунке 6.

Рисунок 6

Читайте также:  Ванна Клеопатры – божественная процедура у вас дома

Одновременно с всасыванием обновляемого горячего теплоносителя Т1 через клапан-термостат 1 (рис. 3 и 5), происходит также втягивание насосом 3 остывшего потока Т21 через балансировочный клапан 2 (вторичного контура). Проходя через насос потоки теплоносителя смешиваются, в результате, на подачу Т11 в коллектор теплого пола уже поступает жидкость заданной настройками НСУ температуры.

Пример циклической работы оборудования НСУ

Совместная работа насоса, балансировочного клапана вторичного контура и термостата происходит следующим образом. Например, в системе ТП предусмотрен термический градиент между подачей и обраткой ТП Δt=10 0 С, а расчетная температура в подающем коллекторе 50 0 С. Допустим, система работает в установившемся режиме, когда результирующий поток теплоносителя от подмеса из первичного контура Т1 и обратного коллектора теплого пола Т21 имеет температуру равную расчетной. При правильно установленных настройках балансира 2 и определенной степени приоткрытия термостата 1, это возможно, только в случае, если из обратки Т21 поступает вода с температурой 40 0 С.

Если же начинает поступать теплоноситель, остывший до 39 0 С или ниже, то соответственно происходит охлаждение и результирующего потока после насоса. Этот дисбаланс улавливается выносным датчиком 1 а, который дает команду на еще большее приоткрытие клапана-термостата 1. В результате увеличивается приток горячей воды из первичного контура отопления Т1 и температура в подающем коллекторе Т11 возвращается к своим расчетным 50 0 С.

Постепенно из обратки Т21 начинает поступать перегретая выше 40 0 С, что влечет за собой обратные процессы – клапан термостата 1 прикрывается и объем подмеса из Т1 снижается. Таким образом, термические циклы в системе ТП постоянно изменяются в режиме поддержания градиент Δt=10 0 С, с подачей t=50 0 С.

Рисунок 7

Какой смеситель выбрать?

Сборка водяного отопления теплого пола может целиком осуществляться своими руками. Это касается не только монтажа отопительных контуров или подключения к коллекторному распределителю, но и комплектации НСУ. Понимая принципы работы его элементов, а также используя типовые рабочие схемы, вполне возможно собрать действующую эффективную смесительную установку. Если же идти по пути наименьшего сопротивления и затратить немного больше средств, то можно обратиться к готовым предложениям от известных производителей отопительного оборудования. Сборка, установка и настройка таких НСУ отличается простотой. И если все делать в точном соответствии с прилагаемыми к ним заводскими инструкциями, то результат гарантировано окажется положительным.

Выше уже был рассмотрен насосно смесительный узел Valtec. Однако также хорошо у потребителей зарекомендовали себя и некоторые другие готовые комплектации НСУ. Например, оборудование для подготовки теплоносителя для системы теплого пола от немецкой компании Kermi (рис.8).

Рисунок 8

Комплект Kermi Стандарт ESM оборудован трехходовым клапаном (Oventrop), циркуляционным насосом (модель Wilo Yonos PARA RS) и, управляющим его работой, предохранительным термостататом. Клапанный модуль Oventrop включает:

  • распределительный трехходовой вентиль;
  • терморегулятор, состоящий из приводной головки и выносного накладного датчика;
  • соединительного циркуляционного патрубка:
  • накидных гаек (американок), к которым подключаются подающий и обратный трубопроводы первичного контура отопления, а также устройства со стороны вторичного контура.

В Kermi Стандарт ESM заложена возможность настройки поддержания температуры теплоносителя в диапазоне 20-50 0 С при давлении в системе ТП до 6 бар. Регулировка осуществляется автоматически в соответствие с установками шкалы на головке-рукоятке трехходового клапана.

Рисунок 9

Еще одна сборка НСУ Solomix от компании Uni-Fitt из более бюджетной серии, но так же неплохо зарекомендовавшая себя на российском рынке. Это готовый смесительный узел на базе трехходового термостата, с встроенным термометром, теплонасосом, байпасным и обратным клапаном и автоматическим воздухоотводчиком.

В НСУ Solomix предусмотрено ручное изменение температуры посредством аналоговой подстройки термостата в диапазоне 20-65 0 С. Комплект рассчитан на работу в системах теплых полов с максимальным давлением до 10 бар. А его форм-фактор, обеспечивающий нижнее подключение трубопроводов первичного контура, заметно облегчает проведение монтажных работ.

Для чего нужен насосно смесительный узел для теплого пола – принцип работы, выбор, правила установки

Теплый пол – это одна из самых комфортных отопительных систем. Теплые полы отлично работают как самостоятельно, так и в качестве дополнительного контура, обеспечивающего максимально комфортный температурный режим. При совместном использовании теплого пола и централизованного отопления возникает необходимость в установке смесительного узла. Именно насосно-смесительный узел для теплого пола и будет рассмотрен в данной статье.

Предназначение смесительного узла

Сочетание центральной отопительной системы и теплого пола включает в себя несколько элементов, среди которых есть ряд основных:

  • Нагревательный котел;
  • Отопительные радиаторы;
  • Магистральный трубопровод централизованной системы;
  • Теплоноситель;
  • Трубопровод теплого пола.

Отопительные котлы разогреваются до температуры от 70 до 95 градусов. Для радиаторов такая температура была бы подходящей, но не для теплых полов – согласно нормам, напольное покрытие нельзя нагревать свыше 31 градуса. Конечно, часть температуры на себя возьмет стяжка, но даже в таком случае теплый пол можно разогревать до температуры не более 50-55 градусов.

Это требование говорит о том, что теплоноситель из центральной системы нельзя использовать в контуре теплого пола из-за его высокой температуры. Чтобы сделать возможной работу двух отопительных контуров, необходимо использовать насосный смесительный узел для систем теплого пола, который позволяет снизить температуру теплоносителя до подходящего значения.

Для снижения температуры забирается теплоноситель из двух контуров – горячего, выходящего непосредственно из котла и радиаторов, и холодного, т.е. обратного контура. Применение узла смешивания в конечном итоге позволяет настраивать свойственный теплому полу температурный режим, не затрагивая деятельность остальных элементов системы.

Существует только одна ситуация, в которой наличие смесителя не требуется – если теплый пол является единственным отопительным контуром, котел для которого работает в низкотемпературном режиме. Во всех остальных случаях узел регулировки теплого пола – это обязательная составляющая отопительной системы.

Преимущества

Насосно-смесительный блок для теплого пола имеет ряд преимуществ сам по себе и является практически полезным дополнением отопительной системы, повышая следующие качества:

  1. Безопасность. Система, совмещающая в себе холодный и горячий контур, при наличии смесителя становится гораздо более безопасной. Это обуславливается снижением вероятности перегрева нагревательных элементов, а значит, снижается и риск случайного контакта с горячей поверхностью отопительных приборов или элементов системы отопления.
  2. Экономичность. Узел регулирования теплых полов, регулирующий температуру отопительных контуров, позволяет сэкономить до 25-30% на энергоресурсах.
  3. Гигиеничность. Поскольку система постоянно работает в заданном режиме, никаких проблем с ее обслуживанием не возникает. В доме можно будет без проблем проводить влажную уборку, и вся влага очень быстро высохнет, не успев стать причиной появления плесени и грибка.
  4. Долговечность. Каждый элемент конструкции выполняется из долговечных материалов, которые без проблем могут прослужить несколько десятков лет.

Подключив управляющие элементы, можно будет сделать так, что настройка смесительного узла теплого пола станет автоматической, т.е. при изменении температуры смеситель для теплого пола самостоятельно увеличит или уменьшит интенсивность подачи теплоносителя, тем самым меняя теплоотдачу отопления в зависимости от внешних факторов.

Принцип работы

Принцип работы смесительного узла теплого пола заключается в следующем:

  • Разогретый теплоноситель перемещается по отопительному контуру и достигает распределительного коллектора;
  • Далее располагается предохранительный клапан и температурный датчик, замеряющий текущее состояние теплоносителя;
  • Если температура горячей воды чрезмерна, то открывается заслонка, подающая в систему необходимый объем холодной воды, за счет чего и осуществляется смешивание теплоносителя;
  • При достижении теплоносителем определенной температуры подача холодной воды прекращается.

Смесительный узел с коллектором для теплого пола не только регулирует степень нагрева теплоносителя, но и позволяет ему циркулировать по системе – и для реализации этих функций используются следующие элементы:

  1. Предохранительный клапан. Данный элемент обеспечивает подачу необходимого количества горячей воды. Ее объем варьируется в зависимости от требуемого температурного режима системы.
  2. Циркуляционный насос. Ключевой элемент системы, делающий возможным движение теплоносителя по каждому контуру отопления, тем самым обеспечивая равномерное распределение тепла на всех участках отопительной системы.
  3. Дополнительные элементы. Отопление может оснащаться дополнительными деталями – байпасом, воздухоотводчиками, клапанами и вентилями. Необходимость в этих элементах определяется индивидуально в зависимости от особенностей работы смесительного узла.

Устанавливается смесительный узел всегда перед входом в отопительный контур теплого пола, а вот к самому месту его установки особых требований нет – смеситель будет одинаково эффективен как в непосредственной близости от теплого пола, так и при монтаже в расположенной на удалении от него котельной.

Виды смесителей для теплого пола

Смесители разных моделей могут иметь много отличий, но самое главное из них заключается в том, какие предохранительные клапаны используются в конкретном случае. Чаще всего смесительные узлы оснащаются двух- и трехходовыми клапанами.

В конструкцию двухходового клапана входит термостатическая головка и жидкостный датчик, который определяет температуру в системе и регулирует подачу теплоносителя в зависимости от полученной информации. Смеситель, оборудованный таким клапаном, работает по простому принципу: основой для смешивания теплоносителя является холодная вода, к которой примешивается горячая, идущая из котла. Благодаря такому принципу предотвращается перегрев теплого пола и увеличивается его срок эксплуатации.

Двухходовой клапан отличается небольшой пропускной способностью, за счет которой обеспечивается плавное изменение состояния теплоносителя – то есть резкие перегрузки в системе отсутствуют. Такие клапаны довольно удобны, но использовать их целесообразно только в помещениях общей площадью не более 200 кв.м.

Трехходовой клапан – это более универсальное устройство, в котором совмещаются функции подачи и регулировки. Принцип работы смесительного узла для теплого пола в данном случае полностью противоположен предыдущему – в системе постоянно циркулирует нагретая вода, к которой для смешивания теплоносителя добавляется определенный объем холодной воды.

В конструкцию трехходовых клапанов могут входить подключенные к термостату сервоприводы, обеспечивающие регулировку температуры теплоносителя в зависимости от внешней температуры. Для дозированной подачи жидкости используется заслонка, расположенная перпендикулярно трубам, идущим от котла и обратного контура. Трехходовые клапаны отлично подходят для систем, используемых для отопления больших домов и оснащенных большим количеством отдельных контуров.

У трехходовых клапанов есть пара недостатков:

  • Теплый пол может перегреться из-за скачка температуры, если объем горячего теплоносителя существенно превышает объем холодного;
  • Трехходовые клапаны отличаются солидной пропускной способностью, поэтому даже небольшое изменение положения заслонки может стать причиной перегрева.

Система, оснащенная автоматикой, отслеживающей внешние погодные условия, довольно удобна и позволяет превентивно устранить ряд проблем. Как только погода на улице заметно меняется, температурный датчик самостоятельно подает системе сигнал о необходимости увеличения или уменьшения интенсивности подачи теплоносителя.

Автоматика имеет особое значение в крупных зданиях – настроить вручную отопление большой площади очень трудно, особенно в условиях динамически меняющейся погоды. Отслеживание наружной температуры осуществляется ежеминутно, и при необходимости заслонка клапана меняет свое положение. Если же в доме на протяжении определенного периода времени не будет никого, то можно установить отопление в режим поддержания минимальной температуры, который позволяет сэкономить на энергоресурсах.

Схемы установки насосно смесительных узлов

Насосно-смесительный узел для теплого пола может обустраиваться по разным схемам, которые меняются в зависимости от используемых элементов. Можно рассмотреть их на примере итальянских смесителей Valtec, которые выполнены в соответствии с самыми современными требованиями, предъявляемыми к подобным устройствам.

Наиболее простые схемы смесительных узлов выглядят следующим образом:

  1. Одноконтурный теплый пол, площадь отапливаемого помещения не более 20 кв.м., ручная регулировка системы. Такая схема насосно-смесительного узла для теплого пола отличается максимальной простотой и дешевизной. Чтобы система была достаточно надежной, желательно укомплектовать ее воздухоотводчиком и шаровыми кранами.
  2. Одноконтурный теплый пол, площадь помещения не более 20 кв.м., автоматическая регулировка, обеспечиваемая термоголовкой с внешним датчиком. В такой системе воздухоотвод тоже не будет лишним.
  3. Площадь помещения – 20-60 кв.м., от двух до четырех контуров, ручная регулировка. Для работы автоматики в данном случае потребуется сервопривод, термостат и датчик.
  4. Площадь помещения до 60 кв.м., от двух до четырех контуров, автоматическая регулировка с внешним датчиком. В такой системе шаровые краны присутствуют изначально. А насос должен располагаться по направлению к смесительному клапану.

Для большей наглядности стоит посмотреть на эти схемы – визуально гораздо проще понять, как выполняется подключение смесительного узла теплого пола. В любом случае, подключение теплого пола – это отдельная тема, которую нужно рассматривать в целой статье.

Заключение

Насосно-смесительный узел – это элемент теплого пола, обеспечивающий его бесперебойную и безопасную работу. Наличие смесителя в системе несет в себе ряд плюсов, поэтому при проектировании системы, если есть хотя бы малейшая необходимость в данном устройстве, его нужно установить.


Как настроить байпас смесительного узла TIM JH-1036

Насосно-смесительная группа TIM JH-1036 имеет регулируемый байпас. Есть шкала с градацией от 0 до 5, но что означают эти цифры уже невозможно узнать после установки байпаса. Сложно понять и зачем он нужен, ведь в других смесительных узлах для теплого пола нет подобного приспособления.

Мне же пришлось очень подробно изучить работу байпаса смесительного узла в результате неправильного подключения его ввода и вывода к системе отопления.

После предыдущей установки смесительного узла TIM JH-1036 настроить байпас не было возможности, поскольку нет инструкции по его настройке, а конструкцию перед установкой не изучил – не снимать же его. Теперь перед установкой изучил и сфоткал внутреннее устройство смесительного узла.

Что регулирует байпас смесительного узла TIM JH-1036.

Смесительный узел имеет условную камеру смешивания, через которую проходит контур отопления теплых полов и контур отопления котла.

Обычно смесительный узел теплого пола имеет один параметр регулировки – температура воды в контуре теплых полов. У смесительного узла TIM JH-1036 есть еще какой-то байпас, да еще и с возможностью регулировки. И это не тот перепускной балансировочный байпас, который срабатывает по излишнему напору, развиваемому насосом.

балансировочный байпас по давлению можно увидеть на фото – самая правая причиндаль.

Он мне нужен, поскольку возможно перекрытие всех направлений отопления теплого пола в результате автоматического регулирования. Кстати, как регулировать балансировочный байпас TIM M307-4 я так и не выяснил – может кто подскажет.

Что же касается байпаса камеры смешивания, то можно найти такое графическое пояснение работы байпаса смесительного узла:

Мало что понятно из этих схем.

Тем более не понятно что означают цифры на шкале и к чему привязано текущее значение. Все это можно выяснить только держа смесительный узел TIM JH-1036 в руках:

Читайте также:  Расчет и возведение фундамента под гараж из шлакоблоков

Оказывается, регулировочный винт крутит цилиндр, в котором есть прорезь, перекрываемая при повороте. Через эту прорезь вода может прокачиваться циркуляционным насосом, минуя условную камеру смешивания.

Нужно учитывать, что наклейка со шкалой от 0 до 5, может быть наклеена произвольно.

Максимальному открытию прорези (на фото выше) соответствует установка регулировочного винта в положение 5 (на фото ниже).

За условную точку считывания значения шкалы можно принять технологический уступ на корпусе камеры смешивания. При значении шкалы 0 щель максимально закрыта. В этом положении вся вода, прокачиваемая циркуляционным насосом по контурам теплого пола, проходит через камеру смешивания.

При полностью закрытом байпасе тепловая мощность отбора энергии смесительным узлом из системы отопления максимальна.

Если байпас полностью открыт, то часть воды циркулирует по контурам отопления, не попадая в камеру смешивания – и тепловая мощность отбора минимальна.

Но на практике выяснилось, что байпасом регулируется не только тепловая мощность.

Экспериментальное выяснение значения, установленное байпасом.

Перед установкой байпаса не мешало бы убедится какому значению соответствует полное открытие и закрытие байпаса.

Только осторожно – края щели острые, как лезвия.

Если смесительный узел уже установлен, а наклейка со шкалой 0-5 наклеена иначе – можно произвести эксперимент.

Вращая регулировочный винт ключом на 10 выяснить в каком положении шкалы максимальный и минимальный расход воды на расходомерах коллектора теплого пола.

Если нет коллектора или расходомеров, что очень зря, можно найти максимальную и минимальные температуры при ограниченной температуре теплоносителя в основной системе (на входе в смесительный узел) и максимально возможной установке термостатической головки смесителя.

Температуру теплоносителя на котле ограничивается так, чтобы смеситель не справлялся с установленной температурой.

Как работает байпас смесительного узла TIM JH-1036.

Казалось бы: устанавливаем тепловую мощность смесительного узла на максимум, полностью закрывая прорезь байпаса – и все.

Но расходомеры коллектора теплого пола позволяют узнать, что байпасом регулируется не только тепловая мощность. При закрытии байпаса полностью поплавки расходомеров резко всплывают.

Оказывается, что расход воды через контура отопления при полностью открытом байпасе более чем в два раза больше, чем при полностью закрытом.

Это не удивительно – прокачивание воды сквозь камеру смешения требует затрат мощности насоса, что сказывается на скорости потока воды.

При максимальной тепловой мощности смесительного узла скорость потока воды по контурам теплого пола минимальна. Для равномерного прогрева всего контура теплого пола может быть потребуется включение насоса на вторую скорость,что увеличит шум системы отопления.

Выяснилось, что в моей системе достаточно минимальной тепловой мощности смесительного узла, чтобы обеспечить на подающем коллекторе температуры теплоносителя 32 градуса при открытых всех направлениях отопления теплым полом даже при старте холодного теплого пола.

Но в других случаях может оказаться что потребуется увеличение мощности отбора.

Как влияет на систему отопления установка байпаса смесительного узла TIM JH-1036.

Внимательно изучить работу смесительного узла пришлось в результате неправильного подключения смесительного узла к системе отопления.

Разное положение регулировки байпаса приводило к тому, что теплым был разный из патрубков присоединения смесительного узла к контуру отопления.

То-есть подача и обратка смесительного узла менялась местами при изменении положения регулировки байпаса. Мистика.

Так я выяснил что подключение осуществил не правильно, перепутав подачу и обратку в смесительный узел.

Теоретически, циркуляционный насос смесительного узла теплого пола никак не должен был влиять на контур котла отопления – насос смесительного узла отдает воду в той же точке, откуда и берет. Цркуляционный насос смесительного узла качает воду по контурам теплого пола, а циркуляционный насос котла прокачивает воду через камеру смешивания смесительного узла.

Но невольные эксперименты позволили выяснить, что даже минимальной мощности насоса смесительного узла при закрытом байпасе достаточно, чтобы осуществлять дополнительную циркуляцию еще и в основном контуре отопления.

Это возможно, если предположить что эквивалентная схема (по аналогии с задачами по электротехнике) системы отопления со смесительным узлом TIM JH-1036 получается такая:

Где “R1” и “R2” – сопротивления в камере смешивания, регулируемые байпасом.

“Контур котла” – старая система отопления с батареями и котлом.

Не зря на смесительном узле четко указано – какой патрубок должен быть подающим. На фото уже правильно подключенный смесительный узел.

Тут я решил, что все-таки не мешало бы ознакомиться с теоретическими основами работы водяных теплых полов в результате чего завел страницу со ссылками на теорию.

В качестве шутки.

Материала еще много, поэтому предлагаю отдохнуть и развлечься – узел, подобный TIM JH-1036, на AliExpress по цене намного дороже, чем в местных магазинах.

Два насосно-смесительных узла теплого пола в одной системе отопления.

У меня получилось в одной системе отопления два смесителя теплого пола.

Один я сделал сразу на первом этапе ремонта и установил его временно.

Пока это смеситель управлял одной веткой теплого пола. Потом предполагал перенести его по окончанию ремонта в других комнатах. Заложил трубы в пол, чтобы к смесителю в новом месте подключить эту ветку.

Но ничего не бывает более постоянного, чем временное.

И в новом месте установил еще один такой же смеситель.

Когда нибудь первый смесительный узел уберу – у коллектора второго смесительного узла присутствуют штуцера для подключения этой ветки и уже проложены трубы.

Обратите внимание на то, что смеситель на первом фото не способен обеспечить температуру подачи теплоносителя больше 25 градусов при температуре, установленной на котле, 50 градусов.

На фото видна температура теплоносителя 30 градусов, достигаемая при температуре на котле 60 градусов и установке термостатической головки смесителя на 40 градусов.

Это как раз понятно при таком то подключении.

Парадокс заключается в том, что этого (25 градусов) хватает, чтобы относительно быстро нагревать помещение на пару градусов, поддерживая установленную температуру.

Выбор значения 0-5 ргулировки байпаса в зависимости от ситуации.

На примере этих двух смесителей теперь можно показать в чем разница между разными регулировками байпаса смесительного узла TIM JH-1036.

Значение установки байпаса 0.

Первый смеситель работает в условиях, когда узким местом системы является подача тепла из системы.

Он подключен, как радиатор в однотрубную систему.

На всякий случай на участке подключения сделал утолщение с 25 до 32 диаметра и поставил кран, поскольку сомневался в затекании достаточного кол-ва воды и обеспечения достаточной мощности.

Эта локальная подсистема отопления построена, понятно, на одном смесительном узле без коллекторной группы.

Проблем же с циркуляцией по одному контуру быть не должно.

Поэтому значение болта регулировки байпаса устанавливаем в 0.

Мы циркуляцию сквозь контур теплого пола делаем минимальной, а циркуляцию сквозь камеру смешивания максимальной.

Выше было показано, что тут насос смесителя будет еще немного помогать циркуляции по системе отопления.

Значение установки байпаса 5.

В этом случае наоборот – смеситель теплого пола подключен сразу к котлу параллельно однотрубной системе с батареями.

Проблем с обеспечением подачи требуемой тепловой мощности на смеситель нет.

А вот крутить 4 контура отопления будет уже не так легко, как один.

Поэтому значение регулировки байпаса ставим в 5.

Мы циркуляцию сквозь контур теплого пола делаем максимальной, а циркуляцию сквозь камеру смешивания минимальной.

Кроме того, такой установкой мы еще ограничиваем влияние этого циркуляционного насоса на основную систему.

Насосно-смесительный узел для теплого пола своими руками: пошаговая инструкция +Фото

Многие из нас выбирают водяное отопления для своих домов. На сегодняшний день это самый эффективный и дешевый способ отопления. При этом мы используем газовые котлы, развешиваем алюминиевые радиаторы и закладываем систему «теплый пол». При всем этом получается сложная система труб, контуров и все это сводится непосредственно к котлу. И тут начинается самое интересное.

Систему батарей и контуров «теплых полов» каждой комнаты не желательно соединять в одну систему (коллектор). На это есть ряд причин, которые мы с вами рассмотрим дальше.

Для качественной и эффективной работы системы «теплый пол» перед коллектором устанавливают насосно-смесительный узел. Такие узлы можно купить готовые в магазине, но цена у них высокая.

Сегодня, мы разберем для чего, и в каких случаях используют насосно-смесительные узлы. И ответим на вопрос, можно такой узел собрать своими руками.

Зачем нужно использовать смесительный узел

Самое главное отличие работы радиаторов, конвекторов от теплого пола – это температура рабочей жидкости.

Так для радиаторов используют температуру воды от 60 до 90 градусов, которая напрямую выходит из котла. А вот для теплого пола рекомендуемая температура жидкости примерно 30-40 градусов.

Принцип работы схож с работой обыкновенного смесителя.

Если мы подключим контуры в коллектор вместе с батареями, то теплый пол будет получать большое количество тепла, а это не приемлемо по ряду причин.

  1. Так как слой стяжки над трубами составляет примерно 3-6 см, то большая температура приведет к растрескиванию и деформации слоя.
  2. Трубы, которые находятся внутри стяжки, будут испытывать большую нагрузку, что приведет к локальным напряжениям, так как при высоких температурах линейное расширение значительно больше, а трубы ограничены слоем бетонной стяжки. Все это приведет к быстрому выходу труб из строя.
  3. Напольные покрытия не любят горячих поверхностей, они начинают – расслаиваться и растрескиваться (ламинат, паркетная доска, паркет). В случае с керамической плиткой, возможно отслоение. Линолеум теряет свою форму, высыхает и деформируется.
  4. Перегретая поверхность пола, нарушает микроклимат помещений.
  5. Если принять, что поверхность пола будет прогреваться до 50 градусов, то по ней будет невозможно ходить босиком.

Из выше указанного следует, что смесительный узел просто не заменим. Так как отдельный котел на систему «теплый пол» вешать просто глупо и не выгодно.

А внести незначительные изменения в схему системы отопления (если отопление уже смонтировано) не составляет труда. А если вы монтируете схему с нуля, то это устройство следует предусмотреть заранее.

Следует сказать, что в продаже есть котлы, в которых сразу предусмотрена технология подогрева и вывода сразу двух жидких носителей разной температуры. Данное оборудование очень дорогое и не пользуется популярностью.

Конструкция насосно-смесительного узла

Насосно-смесительный узел (НСУ) – это сложное устройство, предназначенное для постоянного и стабильного поддержания заданной температуры теплоносителя.

А так же бесперебойного круговорота теплоносителя в системе. Если мы используем комбинированный метод отопления, то обязательно используют насосно-смесительный узел для теплого пола.

НСУ следует рассматривать вместе с коллекторным блоком. Так как мы говорили, что это сложное устройство то, следовательно, оно состоит из нескольких механизмов.

Рассмотрим каждый в отдельности:

  1. Насос предназначен, для поддержания постоянной циркуляции теплоносителя. За счет него происходит перемешивание горячей жидкости и остывшей обратной жидкости, после чего он проталкивает полученный состав по системе. Желательно использовать циркуляционный насос с переключением режимов работы.
  2. Вентиль с термостатом предназначен для контроля температуры. Существует двухходовой вентиль, его используют, когда настройка не требуется. Трехходовой смесительный клапан используют из-за своей стабильности, а так же для больших коллекторов и длинных контуров. Они могут быть смесительного и разделительного вида, с термоголовкой и встроенным датчиком. Рекомендуют использовать с выносным датчиком, они более точные. В последнее время широко используют автоматические вентили, которые можно программировать.
  3. Регулятор расхода. Бывает двух типов.
  • Первый. Балансировочный клапан имеет шкалу от 1до 10. Эти показатели зависят от длины труб. То есть во время укладки контуров замеряют их длину и во время настройки выставляют балансиры согласно замерам. 10 соответствует – самой большой длине, а 1 – самой маленькой.
  • Второй. Поплавковый тип, имеет шкалу от 1 до 5. Имеет вид прозрачного стакана или колбы. Цифры означают расход в литрах в одну минуту. Внутри колбы помещают поплавок (обычно разового цвета), который перемещается по школе в зависимости от давления. К недостаткам относят быстрый выход из-за накипи.
  1. Коллекторный блок используют для подключения нескольких контуров теплого пола. Называют блоком, потому что он объединяет в себе обратный коллектор и дающий. Коллекторы рассчитаны на определенное количество подключений.
    • Циркуляционный насос.
    • Тройники металлические или пластиковые.
    • Двух или трех ходовой термоклапан.
    • Обратный клапан.
    • Шаровый кран.
    • Воздухоотводчик ручного типа.
    • Термометры.
    • Фильтр грубой очистки.

    Сперва стоит создать чертеж, для того чтобы определиться с количеством контуров. Это нужно для того чтобы узнать на сколько выходов делать или покупать коллектор.

    Профессионалы рекомендуют купить готовые коллекторы. Но можно его спаять из полипропиленовых уголков высокого качества, только сечение должно быть ¾ дюйма.

    Только уголки придется оснащать фитингами, что увеличивает себестоимость. Все соединения следует скручивать паклей, которую промазывают силиконом.

    Сейчас мы с вами рассмотрим самый распространенный вид насосно-смесительного узла, который легко собирается своими руками.

    На схеме мы не нарисовали запорную арматуру. Но профессионалы и специалисты рекомендуют снабдить данный узел запорными шаровыми кранами.

    Поэтому мы их обозначали красными кругляшками. Они выполняют функцию отсечения потока жидкости в случае ремонта или замены насосно-смесительного узла или его комплектующих.

    Следует использовать латуниевые краны высокого качества.

    Краны, расположенные на рисунке справа – устанавливаются перед коллекторами, а слева – в разрыв общего контура отопления (эти краны обязательны).

    Термометры – визуально показывают температуру рабочей жидкости в системе, на разных участках. Позволяет точно отрегулировать работу узла. Такое расположение самое логичное.

    Первый термометр показывает температуру подаваемой жидкости, второй – температуру после перемешивания, третий – температуру теплоносителя прошедшего полный цикл обогрева пола. Термометры могут быть накладными и врезными, но более точные второй вариант.

    Читайте также:  Пороги для пола: виды, размеры и порядок установки

    Двухходовой клапан – регулирует поток горячего теплоносителя в систему «теплый пол». Следует использовать однотрубные клапаны, обычно они имеют маркировку «G».

    Двухходовой клапан укомплектовывается термоголовкой с выносным датчиком, за счет этой головки происходит регулировка клапаном. Датчик следует установить на трубу сразу за насосом.

    На байпасе устанавливаем балансировочный клапан, который регулирует проток обратки. Тем самым можно регулировать производительность и напор циркуляционного насоса.

    Вместо него можно использовать обычный сантехнический кран. Но регулировка балансировочного крана осуществляется с помощью шестигранника, что исключает его случайную перенастройку.

    Циркуляционный насос отвечает за равномерный и бесперебойный круговорот теплоносителя в системе.

    Просто насоса котла не хватит, для равномерной циркуляции жидкости по контуру радиаторов и дополнительным контурам системы «теплого пола». Поэтому НСУ, обязательно снабжается собственным насосом.

    Это основные составляющие и примерное расположение комплектующих элементов насосно-смесительного узла. Но могут использоваться и дополнительные элементы:

    • Обратный клапан используют для предотвращения протекания жидкости в обратном направлении.
    • Фильтр грубой очистки используют для предотвращения попадания в систему крупных твердых включений.
    • Воздухоотводчик, используют для удаления воздуха в системе.
    • Сливной кран.
    • Кран Маевского.
    • Расходометры. Только устанавливают на подающую часть, в других местах бесполезно это делать.
    • Термостат используют для того чтобы насос отключился в случае резкого и чрезмерного возрастания температуры теплоносителя.
    • Трехходовые или четырехходовые клапаны.

    Так же расположение и количество разных компонентов может быть разным. Располагать всю систему следует так, чтобы было удобно добраться то всех узлов и агрегатов, а в случае внештатной ситуации произвести замену и ремонт в самые короткие сроки.

    Скажем сразу трубы можно использовать из любого материала сталь, полипропилен, металлопластик или нержавеющая сталь.

    Во время сборки узла, следите, чтобы в электронные приборы не попадала вода. Сначала собираем узел, потом всю электронику, после визуального осмотра включаем все в сеть электропитания.

    Настройка и регулировка узла смешения занимает гораздо больше времени, чем сборка и установка.

    Разновидности и принцип работы НСУ

    Различаются НСУ по клапанам:

    • Системы с двухходовым клапанном, применяют для помещений и зданий с площадью до 200 квадратных метров.
    • Системы с трехходовым клапаном, применяют для помещений с большой площадью. Они способны пропускать большое количество горячего теплоносителя. Следо м поток проходит через термостатический клапан, где происходит регулировка потока за счет открывания и закрывания устройства клапана.

      Насос за счет, которого постоянно циркулирует поток теплоносителя. Так как насос работает с одной постоянной производительностью, то за собой в трубе образуется зона разряжения, в которую затягивается поток горячей жидкости, который регулируется двухходовым клапаном.

      А недостаток объема компенсируется потоком холодного теплоносителя с обратки, который проходит через байпас. Смешивание происходит на пересечении потоков (верхний тройник), а циркуляционный насос перекачивает уже доведенную до заданной температуры жидкость.

      Следует отметить, что подпитка горячим теплоносителем требуется редко и в незначительном объеме.

      Плюсы применения насосно-смесительного узла в системе «теплый пол»

      1. Экономия. Многие специалисты отмечают экономию в районе 30 процентов. Что значительно экономит семейный бюджет.
      2. Безопасность. Так как температура теплоносителя постоянная, то не возможно получит ожог. По санаторным нормам температура воды в теплых полах должна быть 31 градус. Такую систему можно использовать в детских садиках и больницах.
      3. Комфорт, так же связан с постоянной температурой теплоносителя и равномерному прогреванию всей поверхности. Микроклимат помещения не нарушается.
      4. Функциональность и удобство. Требуется мало место для установки и обслуживания. Так же можно с наименьшими переделками доставить

      Производительность НСУ и насоса

      Все элементы узла следует выбирать по производительности (сколько литров пропускает за одну минуту). Расчеты по производительности насосно-смесительного узла лучше заказать специалистам в области теплотехники.

      Но так, же их можно сделать самостоятельно, в данный момент существует большое количество онлайн калькуляторов. Основной показатель это площадь отапливаемого помещения.

      Так же следует учитывать, теплый пол – это единственный вид отопления или вспомогательный. В программу онлайн калькулятора заложен теплоноситель вода. Там указана его плотность и теплоемкость.

      Но иногда в качестве теплоносителя применяют незамерзающие жидкости, тогда следует внести уточнения в показатели плотности и теплоемкости.

      А насосы выбирают по создаваемому напору. Лучшими признаны насосы фирмы WILO. Так как двухходовой или трехходовой клапаны регулируют подачу горячей воды.

      А часто он перекрывается полностью, то циркуляция в системе «теплый пол» происходит только за счет насоса НСУ. В расчетах следует указать длину самого длинного контура и не стоит беспокоиться за другие контура (более короткие).

      В коллекторе напротив каждого контура устанавливают балансировочное устройство (гидравлический разделитель). Это устройство используют для точной настройки всего узла насосно-смесительного.

      Так же в калькуляторе следует указать диаметр труб, из которых собраны контуры. Это связанно с тем, что гидравлическое сопротивление прямо зависит от диаметра трубы. Программа тем еще хороша, что в нее заложена поправка на переходники, уголки и фитинги.

      Заключение

      Для каждого случая в индивидуальном порядке подбирается модель или модификация насосно-смесительного узла. Если вы никогда не были связаны с монтажом и разработкой тепловых систем, лучше всего приобрести уже готовое изделие.

      Выбор готовых изделий огромен, от таких производителей как – Uni fitt, Tim, Valtec, Combi. Если вы обладаете некоторыми навыками, то можете собрать НСУ своими руками, только используйте качественные и проверенные комплектующие.

      Принцип работы и сборка смесительного узла теплых полов

      Теплые полы позволяют повысить энергоэффективность современного жилья, сделать его комфортнее, а также существенно экономят средства на отопление. Из всех разновидностей теплых полов водяной наиболее сложен в плане регулировки. Но он пользуется большей популярностью благодаря экономически выгодной эксплуатации, долговечности и надежности. Смесительный узел для теплого пола является важным элементом системы управления. Он поддерживает необходимую температуру внутри контуров и обеспечивает циркуляцию теплоносителя. Правильная работа коллектора влияет на функциональность и эффективность водяной системы отопления.

      Цель использования устройства

      Применение насосно-смесительного узла для конструкции теплого пола обязательно, так как вода в контурах должна иметь совершенно другую, более низкую температуру, нежели в обычных системах отопления. Такой температурный режим не приемлем для системы теплого пола по нескольким причинам:

      • Контуры с теплоносителем располагаются по всей площади помещения. К тому же они заключены в стяжку, которая также обладает высокой теплоемкостью. Отсюда следует, что для поддержания комфортной температуры в помещении уровень нагрева водяной системы должен быть ниже, чем в классических радиаторах.
      • Чтобы человек ощущал комфорт при хождении босиком по теплому полу, температура поверхности покрытия не должна превышать 30 градусов. В противном случае появятся дискомфортные ощущения.

      Назначение насосно-смесительного узла также связано с поддержанием достаточного гидравлического давления в контурах с большой протяженностью или сложной криволинейной формой.

      Принцип работы

      Цель, которая ставится перед данным видом оборудования, заключается в снижении температуры воды в контуре до комфортного значения без влияния на основную систему отопления. Роль смесителя состоит в подмешивании холодной воды в горячий поток. Состоит смесительный узел из следующих элементов:

      • Циркуляционный насос, установленный на входе теплоносителя. Благодаря насосу в системе устанавливается и поддерживается оптимальное значение давления воды, идущей по контурам, а также скорость ее циркуляции.
      • Узел подмеса в виде регулирующего клапана, подпитывающего водяной контур горячим напором. Открытие клапана происходит после сигнала термодатчика. Горячая вода перестает поступать в контур после того как он приобретет заданную температуру и термодатчик подаст соответствующий сигнал.
      • Распределительная гребенка с расходомерами, позволяющая одновременно подключать несколько контуров.
      • Сепаратор, который в автоматически удаляет воздух из системы. Обычно устанавливается на готовые смесительные узлы от известных производителей.

      Главная особенность смесительного узла для теплого пола заключается в его автономности. Он работает в автоматическом режиме без участия человека, самостоятельно контролируя и регулируя давление и температуру теплоносителя в контуре.

      Элементы системы

      Все схемы объединяет простота работы, возможность самостоятельного монтажа, а также расположение основных элементов. Подача и «обратка» располагаются с левой стороны, а коллектор с гребенками – с правой. Различия схем заключаются в добавлении некоторых деталей. Чаще коллектор располагают около смесительного узла, реже – в отдалении, что может быть связано с дефицитом свободного пространства или планировочными особенностями помещения.

      Состав комплектующих зависит от материала используемых труб – из сшитого полипропилена, металлопластиковых, гофрированных из нержавеющей стали или медных.

      В схеме используют следующие элементы:

      • Запорная арматура в виде шаровых кранов. Они не участвуют в регулировке основных показателей теплоносителя – его температуры и давления, но необходимы при проведении ремонтных работ, когда требуется отключить отдельные узлы системы.
      • Косой фильтр, предназначенный для механической очистки воды. Его применяют в системе, если нет уверенности в чистоте используемой воды. Такой фильтр не пропустит твердые частицы в устройство для настройки, обеспечив тем самым корректную работу системы и продлив срок службы клапанов.
      • Термометры, обеспечивающие зрительный контроль над температурой воды внутри контура. Некоторые модели оснащены зондом, который непосредственно соприкасается с теплоносителем. Термометры бывают жидкостными, механическими и цифровыми.
      • Термостатический клапан является основным элементом управления смесительного узла. Сверху на него надевается термостатическая головка. Когда температура теплоносителя меняется, головка механически воздействует на термоклапан. Если градус превышен, клапан закрывается, а при понижении температуры – открывается.
      • Байпас для отбора холодной воды – перемычка, которая при помощи сантехнических тройников формируется между трубой подачи и «обратки». Для осуществления точной настройки напора теплоносителя на байпасе устанавливают балансировочный вентиль, который обеспечит оптимальный режим работы системы и ее бесшумность.
      • Оптимальная скорость движения воды по трубам обеспечивается при помощи циркуляционного насоса.

      Питающий дроссель

      Система с двухходовым клапаном является наиболее простой в исполнении. Контроль над температурой воды, поступающей в трубы системы, осуществляется благодаря термостатической головке, установленной на клапане и жидкостному датчику. Открытие и закрытие клапана происходит благодаря головке, пропускающей горячую воду от котла в контур или отсекающей ее.

      Таким образом, вода из «обратки» поступает неограниченно, а горячая только при необходимости под контролем клапана. Благодаря этому исключается перегрев теплого пола и продлевается срок его службы. Невысокая пропускная способность двухходового клапана обеспечивает плавную регулировку температуры воды, исключая резкие перепады.

      Надежные и эффективные клапаны рекомендуют использовать большинство специалистов. Но по их же мнению, питающие клапаны не будут полезны при слишком большой площади помещений (свыше 200 м2).

      Трехходовый дроссель

      В отличие от двухходового клапана, трехходовый осуществляет смешивание воды разной температуры внутри себя. Этот элемент объединил в себе питающий перепускной клапан и байпас. Особенность заключается в возможности настройки количества горячего и холодного теплоносителя для смешивания, благодаря заслонке, расположенной между трубой с горячей водой и «обраткой».

      Такие клапаны имеют недостатки. Есть вероятность подачи очень горячей воды по сигналу термодатчика, которая может из-за резкого перепада спровоцировать повышение давления в трубах и нарушение целостности контуров. Большая пропускная способность трехходового клапана может стать причиной резкого перепада температуры воды в контуре даже при минимальном смещении регулировки устройства.

      Особенности настройки смесительного узла

      Механизм настройки обеспечивает точную регулировку температуры, движущейся по трубам системы обогрева, воды. В первую очередь это необходимо для создания комфортной поверхности пола и условий, продлевающих срок службы системы. Из котла вода выходит с температурой 60-80 градусов, а приемлемой для поверхности пола является температура не выше 30 градусов. Смесительный узел вводит в разогретый теплоноситель холодную воду, доводя его до оптимальных показателей.

      Настройка производится в ручном или автоматизированном режиме – сервопривод потребуется приобрести дополнительно, так как он не входит в базовый комплект. Каждый контур оснащается запорными кранами, с помощью которых каждый контур имеет свои параметры настройки. Таким образом можно установить разную температуру поверхности пола для отдельных комнат или для отдельных участков в одном помещении.

      Самостоятельная сборка

      Собрать коллектор можно самостоятельно. В комплекте, как правило, производитель прикладывает подробную монтажную схему. Выполнить потребуется следующие виды работ:

      1. Фиксация оборудования осуществляется в горизонтальном положении на стене или в нише. Основное требование заключается в обеспечении доступа для обслуживания элементов узла и их управления. Если коллектор устанавливается не в отдельном помещении, а в ванной или прихожей, его в эстетических целях необходимо замаскировать, установив внутри коллекторного шкафа.
      2. Нагретая вода от котла подается снизу, а сверху монтируют «обратку». Для установки запорных кранов выбирают участок перед рамкой, после них монтируют насос. С его помощью будет происходить смешивание «обратки» и горячей воды, а также поддерживаться оптимальное давление в трубах.
      3. Выполняют установку пропускного клапана и распределительной гребенки.
      4. После этого необходимо выполнить разводку труб. Те, что идут на пол, закрепляют сверху, а трубы от системы отопления крепят в нижней части.
      5. При подключении коллектора используют комплектующие в виде компрессионных фитингов, в состав которых входит опорная втулка, зажимное кольцо и промежуточная латунная гайка.
      6. Когда монтажные работы завершены, приступают к проверке герметичности соединений – опрессовке. Для этого с помощью специального насоса в системе повышают давление и оставляют на 24 часа. Коллекторный узел полностью готов к эксплуатации, если установленное изначально значение давления за сутки не поменялось.

      При недостатке опыта при самостоятельной сборке коллектора могут быть допущены следующие ошибки:

      • Некорректная настройка байпаса из-за неверных расчетов допустимой нагрузки на контур. Такие расчеты необходимо выполнять до начала монтажных работ.
      • Отсутствие сепаратора приводит к образованию воздушных пробок в водяных конурах, из-за чего падает эффективность системы отопления.
      • Неправильный выбор точки подачи горячей воды. Теплоноситель должен поступать сверху, а не снизу.
      • Отсутствие обратного клапана, который понадобится для предотвращения протечки.

      Если изначально коллектор собран неправильно, впоследствии устранить ошибки и переделать систему будет проблематично. Поэтому лучше доверить работу специалисту, который произведет правильную сборку и настройку оборудования.

Ссылка на основную публикацию