Трансформаторы постоянного и переменного тока

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Читайте также:  Применение бирюзовых обоев в спальне

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Читайте также:  Чем можно развести клей ПВА?

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Для чего необходим и как работает трансформатор постоянного тока

Для того чтобы увеличить или уменьшить постоянный потенциал применяют соответствующий трансформатор. Этот преобразователь имеет магнитопровод, который выполнен как магнитная система, а в его пазах находятся обмотки (первичная и вторичная) и их коммутаторы. Последние – это включенные управляемые полупроводниковые вентили.

Для преобразования постоянного потенциала одной величины в другую применяют вращающееся магнитное поле, оно создается в обвивке (первичной).

Читайте также:  Классическая кухня со столешницей «островом»

Большой трансформатор постоянного тока

Это производят переключением вентилей и подачей импульсов тока на электроды, которые передвинуты по отношению друг к другу на определенный угол (зависит от того сколько секций имеет трансформатор постоянного тока), а в результате уменьшаются потери, массогабаритные значения и увеличивается надежность и КПД.

Где применяют такие приборы

Они позволяют повысить тот потенциал, который вырабатывает источник переменного электричества, установленный на электростанции, и передают его на большое расстояние, при этом напряжение бывает высоким (от 110 до 1150 кВ). Этим уменьшают потерю энергии, и возможно применять провода меньшего сечения.

Передаваемое напряжение от высоковольтной линии снижают, применив преобразователи до 600, 380, 220 и 127 В. На таких показателях работают бытовые приборы в жилых домах и промышленные — на производствах.

Трансформаторы применяют и на подстанциях, здесь они необходимы для того чтобы уменьшить напряжение, которое подают к контактному двигателю или вспомогательной цепи.

Такие аппараты бывают тяговыми, лабораторными и др., но все они считаются силовыми. Их применяют для подключения электроприборов, электросварки и др. Трансформаторы имеют одну- , три фазы, две- и множество обмоток.

Как работает этот аппарат

Рассмотрим принцип работы трансформатора, который основан на таком явлении, как электромагнитная индукция. Самый простой аппарат имеет стальной магнитопровод и две обвивки, которые изолированы и не связаны друг с другом электрически. К первичной обвивке подают переменную эл.энергию, а к вторичной, через выпрямитель, подключают потребителей.

Для работы тягового аппарата осуществляют связь управляющей размагничивающей обмотки с потенциалом генератора. Источником питания является вторичная обмотка распределяющего трансформатора, в цепь которого входят аппараты постоянного напряжения. Они и регулируют величину электричества в главной обмотке, которая зависима от потенциала тягового генератора.

По принципу работы трансформатор постоянного потенциала это простой магнитный усилитель, который имеет две обвивки — рабочую и управляющую обмотки, причем последняя (управляющая) не имеет обратной связи.

Трехфазный понижающий трансформатор

Этот аппарат состоит из двух сердечников, имеющих тороидальную форму. Их изготовляют из пермаллоя (сплав, имеющий ферромагнитные свойства), это лента имеет толщину 0,2 мм. На сердечниках имеется катушка с обмоткой (употребляют только медный провод с сечением 1мм). Все залито эпоксидной смолой или подобной смесью, которая не дает влаге попасть внутрь, и обеспечивает долгую и надежную эксплуатацию трансформатору.

Если хотят установить преобразователь на тепловоз, то применяют для этого угольники и стягивают их шпильками. Обвивку управления аппарата стабильного потенциала включают на выходы генератора, пропуская его через резистор. Исходя из этого, сила тока преобразователя, всегда прямо пропорциональна ампиражу тягового агрегата. Поэтому электричество в рабочих обмотках всегда пропорционально не только напряжению генератора, но и току подмагничивания.

Значит, при увеличении вольтажа генератора, на ту же величину растет ток, выходящий из преобразователя со стабильным напряжением. А так как в цепи автоматики используют слабое электричество, то максимальный трансформаторный ампираж на выходе не будет выше 3 А.

Аппарат для стабильного электричества и трансформатор постоянного напряжения идентичны, только первый без управляющей обмотки. Для того чтобы его подмагнитить через дырочки сердечника проходит гибкий провод. По нему проводят ток от двух двигателей, при его росте, увеличивается подмагничивание и растет электричество обвивки на выходе.

Отсюда, можно сделать вывод, что ток, образующийся в рабочей цепи преобразователя прямо пропорционален сумме этой же величины, но двух электрических двигателей (тяговых). В рабочей цепи преобразователя электричество может иметь максимальную величину, которая составит до 3 А.

Устройство трансформатора тока

В устройстве можно встретить первичную обмотку, которая будет похожа на пластину или на ролик. Благодаря этой пластине можно получить качественную обмотку, которая будет иметь минимальное количество витков. Это в свою очередь может значительно повлиять на эффективность работы. Вторичная обмотка может иметь большее количество витков. Их необходимо намотать на ламинирующую основу или на материал, который будет иметь минимальные потери. При необходимости вы можете прочесть про резервную релейную защиту трансформатора.

Плотность магнитного потока можно считать достаточно низкой. Вторичная обмотка обычно рассчитываться на показатель в 1 или 5 Ампер. Увидеть это можно на векторной диаграмме, которая расположена ниже:

Для чего нужны трансформаторы переменного и постоянного тока

Трансформаторы на сегодняшний день широко используются на производстве или в быту. Они позволяют надежно защитить технику или приборы от поражения током. При необходимости вы также можете приобрести сварочные трансформаторы для выполнения работ с металлом.

Это устройство считается достаточно важным в электротехнике. Текущие уровни электрического тока обязательно должны контролироваться. Это необходимо не только в целях безопасности, но и для повышения эффективности работы бытовых приборов.

Как выбрать трансформатор

Проверка трансформатора тока должны выполнять регулярно. Ее выполнением можете заниматься вы, но, если у вас нет определенного опыта, тогда лучше всего доверить эту работу профессионалам. Многие предприятия готовы качественно выполнить эту работу. Если вам необходима замена деталей в трансформаторе, тогда приобретать их необходимо только у официального дилера. Также во время выбора вам необходимо знать следующие обозначения:

Благодаря расшифровке трансформатора переменного и постоянного тока вы сможете выполнить качественный монтаж устройства. Также следите за его проверкой, частота которой будет зависеть от модели вашего устройства. Установку трансформатора необходимо выполнять при полном отключении от электрической сети. При необходимости выполнить монтаж вы можете на дин-рейку, в трансформаторные шкафы или пусковую панель.

Обычно средняя стоимость трансформатора может колебаться от 30 000 до 100 000 рублей. Цена также обычно может зависеть от мощности и пропускной способности. Если допустимая мощность будет низкой, тогда соответственно и цена значительно упадет. Проверять новый трансформатор необходимо на месте. Благодаря этому вы сможете избежать мошенников. Обычно срок работы трансформатора может быть разнообразным. Он зависит от ряда факторов, которые могут повлиять на этот процесс.

Ссылка на основную публикацию