Как посчитать потери давления воды на горизонтальном участке водопровода?

Как посчитать потери давления воды на горизонтальном участке водопровода?

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа. Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления.

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

h-потеря напора здесь она измеряется в метрах.
λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже.
L-длина трубопровода измеряется в метрах.
D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
V-скорость потока жидкости. Измеряется [Метр/секунда].
g-ускорение свободного падения равен 9,81 м/с 2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда].
D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах.
ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ – Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа [мм] с [м].

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться “эквивалентом шероховатости труб” и не как иначе, а то результат будет ошибочный. Эквивалент означает – средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Таблица: (Эквивалент шероховатости)

Таблица: (Кинематическая вязкость воды)

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.

Дано:
D=500мм=0.5м
Q=2 м 3 /с
L=900м
t=16°С
Жидкость: H2O
Найти: h-?

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω – площадь сечения потока. Находится по формуле:

ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

Далее завершаем формулой:

h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Калькулятор расчета потерь напора в водопроводе

Неправильным будет полагать, что если, например, насосная станция или установленный гидроаккумулятор подает в домашнюю разводку труб воду под определенным давлением, то это давление будет и на конечных точках потребления. На самом деле приходится закладывать еще и определённый эксплуатационный запас создаваемого напора — на неизбежные его потери.

Калькулятор расчета потерь напора в водопроводе

Природа этих потерь различна. Только на преодоление силы гравитации (если, скажем насосная станция или коллектор разместились в подвале, а точки потребления находятся на этажах), хочешь не хочешь, приходится «отдавать» по 0.1 атмосферы (бар) на каждый метр высоты подъема. Немало «крадут» и горизонтальные участки – в силу гидравлического сопротивления в трубах. И чем меньше диаметр и длиннее участок – тем эти потери существеннее. Добавьте сюда еще и повороты, тройники, краны и вентили, фильтры, переходы на другой диаметр и т.п. – каждая такая точка даёт дополнительное локальное сопротивление, уменьшающее общий напор воды.

И может получиться так, что из подаваемых, например, 2.5 атмосфер к дальней точке водозабора доходит только каких-то 0.2 атмосферы, и этого явно недостаточно для нормальной работы устройства. Чтобы избежать подобных казусов, необходимо заранее, еще на стадии проектирования своей водопроводной системы, «моделировать ситуацию», то есть просчитывать влияние гидравлического сопротивления. В этом может помочь предлагаемый калькулятор расчета потерь напора в водопроводе.

Несколько необходимых пояснений будут даны ниже.

Калькулятор расчета потерь напора в водопроводе

Пояснения по проведению вычислений

На страницах нашего портала есть информация, как просчитывается номинальный диаметр трубы для водопровода, исходя из необходимого расхода воды и оптимальной скорости потока в трубах.

Как правильно определиться с диаметром водопроводной трубы?

Главный критерий – труба должна обеспечивать требуемый расход воды в конечных точках потребления. Отсюда строится и весь дальнейший алгоритм, реализованный в калькуляторе расчета минимально необходимого диаметра водопроводной трубы – к соответствующей странице портала ведет ссылка.

Но на этом останавливаться не надо. Каждая из планируемых «веток» водопровода должна быть проанализирована и с точки зрения потерь напора.

Что указываем в полях калькулятора?

  • В первую очередь – какое давление выдается на начальной точке рассчитываемого участка.

— Это может быть нижний предел настройки насосной станции или гидроаккумулятора, то есть то давление, при котором происходит включение насоса.

— Это может быть напор в центральном коллекторе в точке, где производится врезка ответвления в систему.

— Это может быть напор на коллекторе, вынесенном на этаж, к которому дальше подсоединяются все приборы на этом этаже.

По большому счету, это вообще может быть любая произвольная точка системы, давление воды в которой заведомо известно или рассчитано. Например, от какой-то трубы отводится небольшая «ветка» для отдельно стоящего сантехнического прибора.

То есть всю систему можно разбить по своеобразной «иерархии». Например насос, далее – стояки, коллекторы на этажах, за ними – магистральные трубы на этажах с точками врезки и т.п. тТо есть для каждой из точек можно просчитывать потери напора (этим же калькулятором), и от нее потом «плясать» дальше.

  • Второй пункт – разница высот между начальной и конечной точками рассчитываемого участка. Указание идет в метрах, программа пересчитает в атмосферы.
  • Далее – рассматриваются участки труб на пути от начальной до конечной точки. Трубы с диаметром более 1 дюйма в расчет можно не принимать – гидравлическое сопротивление в них настольно невелико, что им можно пренебречь. Правда, такие трубы во внутренней водопроводной разводке практически и не встречаются.

— При указании диаметра, который имеется на участке, откроются дополнительные поля ввода данных.

— Для каждого из трех диаметров (½», ¾» и 1″) потребуется указать еще и тип труб. Точнее, не используются ли стальные (в том числе оцинкованные) трубы ВГП, повышенная шероховатость стенок которых дает куда более высокие показатели гидравлического сопротивления, если сравнивать с пластиковыми металлопластиковыми, медными трубами.

— Длина для каждого диаметра складывается из длин всех горизонтальных и вертикальных отрезков на рассчитываемом участке.

Если предлагаемого в калькуляторе диаметра на участке нет, то оставляется как есть, и он автоматически будет исключен из расчета.

  • Далее – указываются все имеющиеся на рассчитываемом участке точки где возможны локальные потери напора. Точнее, точки для удобства уже перечислены – и нужно лишь просчитать на чертеже или плане и указать их количество. Если казанного элемента нет, можно или поставить ноль, или даже просто оставить строку незаполненной по умолчанию – она автоматически исключится из расчёта.

Кстати, если используются гибкие трубы (например, металлопластиковые) и повороты выполнены без отводов, только изгибом, это все равно принимается в расчет. Просто указывается плавные поворот, с радиусом, превышающей два диаметра трубы.

  • Остается только нажать копку «РАССЧИТАТЬ…» и получить прогнозируемый напор на дальнем конце рассчитываемого участка. Ну и сравнить его с тем, что необходимо для корректной работы конечного прибора. Обычно давления в 0,5 атмосферы достаточно для большинства сантехнических устройств. Меньше – могут возникнуть проблемы. Кроме того, некоторые изделия требуют и более высоких показателей давления – это оговаривается в их технических характеристиках.

Если давление недостаточное – придется как-то это дело корректировать. Возможные способы – повышение давления в начальной точке, увеличение диаметров отдельных участков, укорочение длины участков, их спрямление, снижение «насыщенности» водопровода кранами, отводами и т.п. После каждой такой теоретической корректировки проводится контрольный расчет. И так — пока не будет найдено оптимальное со всех точек зрения решение.

Расчет потерь напора воды в трубопроводе

Чтобы выбрать насос для скважины, необходимо сделать расчёт потребного напора, а одна из частей определения потребного напора – это расчёт потерь напора в трубопроводе. Именно этой части вопроса посвящена данная статья.

Потеря напора в трубопроводе связана с тем, что поток воды, протекающий внутри трубы, испытывает сопротивление. Его величина зависит от:

  1. диаметра трубы – чем меньше диаметр, тем больше сопротивление
  2. скорости потока – чем больше скорость потока, тем больше сопротивление
  3. гладкости внутренней поверхности трубы.
Читайте также:  Как отодрать обои от стен, если они не отдираются

Даже двигаясь по прямой, горизонтальной трубе, поток воды испытывает сопротивление, пусть и небольшое. При большой протяженности трубопровода суммарное сопротивление может оказаться значительным.

Расчёт потерь напора на прямых участках трубопровода

Чтобы не вдаваться в глубокие теоретические расчеты, можно воспользоваться уже готовыми таблицами с вычисленными данными для всех основных диаметров труб и расходов воды. Сейчас повсеместно используются полимерные трубопроводы – из полипропилена, полиэтилена низкого или высокого давления и других полимеров. Такие трубы имеют массу преимуществ перед стальными трубами: они легче, проще в монтаже, не подвержены коррозии, дешевле, более гладкие, и как следствие в них меньше потери напора.

В этой таблице приведены значения потери напора на 100 м трубопровода. Потеря напора указана в метрах водного столба.

РасходВнутренний диаметр трубы, мм
м 3 /чл/минл/с141925323850637589
0,58,330,148,92,10,6
0,813,330,2220,24,71,30,4
116,670,2829,871,90,6
1,5250,4214,23,91,20,5
233,330,5623,56,420,9
2,541,670,699,42,91,30,4
305008,331341,80,50,2
3,558,330,97175,32,30,60,2
466,671,1121,56,62,90,80,30,1
4,5751,258,23,610,30,1
583,331,399,84,31,20,40,2
5,591,671,5311,65,11,40,50,2
61001,6713,561,60,50,2
6,5108,31,8115,56,91,90,60,3
7116,71,9417,77,82,10,70,3
8133,32,2222,49,92,70,90,40,2

Для стальных труб можно использовать эти же значения, умножив их на коэффициент 1,5.

Например, при расходе воды 0,5 м 3 /ч в трубопроводе с внутренним диаметром 19 мм и длиной 100 м потеря напора составляет 2,1 м.

Расчёт потери напора на местных сопротивлениях

Кроме того, потеря напора происходит в местных сопротивлениях: поворотах, изгибах, вентилях, заслонках, в разветвлениях трубопровода и в местах его сужения или расширения. Потери напора воды в них зависят от скорости потока и формы местного сопротивления.

Ниже в таблице приведены потери напора в основных местных сопротивлениях:

Потеря местного сопротивления указана в сантиметрах водного столба.

Скорость
потока, м/с
Колено 90 градусов
Скругленное колено
Клапан
0,41,20,1131
0,51,90,1832
0,62,80,2532
0,73,90,3432
0,84,80,4533
0,96,20,5734
17,60,735
1,5171,640
2312,848
2,5484,458
3706,371
3,5938,585
412011100
4,516014120
519018140

Расход воды соотносится со скоростью потока так:

где Q – это расход воды (в м 3 /с), S – площадь поперечного сечения (в м 2 ), v – скорость потока (в м/с). Площадь поперечного сечения для трубы S = π*D2/4, где D – внутренний диаметр трубы.

Например, при расходе воды 0,5 м 3 /ч (0,000138889 м 3 /с) в трубопроводе с внутренним диаметром 19 мм (S = 0,000283385 м 2 ), скорость потока составит

v = Q / S = 0,000138889 / 0,000283385 = 0,49 м/с

Местное сопротивление колена при этом будет 1,9 см, а клапана 32 см.

Как видно, потери напора на местных сопротивлениях – это самая малая часть потерь во всём трубопроводе. Они могут быть значительными только при больших скоростях потока, т.е. когда через тонкую трубу проходит большой объем воды. Использования более толстых труб, диаметр, которых, соответствует расходу воды, практически снимает проблему местных сопротивлений. При расчете потерь напора воды (и дальнейшем выборе насоса для скважины) достаточно заложить на местные сопротивления несколько метров напора, с небольшим запасом для верности – от 2 до 4 м.

Вместе с потерями напора воды в прямых участках трубопровода, эта цифра для небольшого загородного дома может уложиться в 5 м.

Для того, чтобы правильно выбрать насос для своей скважины, необходимо знать, потребный напор – т.е. напор, который необходим для водопроводной системы дома. В этой статье речь пойдёт о расчете потребного напора и расчете потерь напора в трубах водопровода на примере небольшого загородного дома.

В этой статье речь пойдет о характеристиках насосов и скважин, и о том, как правильно выбрать для своей скважины насос, исходя из имеющихся нужд.

1.3 Определение потерь напора на расчетных участках.

Потери напора на расчетных участках:

, м,

где hl потеря напора на трение по длине потока, линейная потеря напора м;

В трубопроводах внутреннего водопровода линейные потери обычно значительно больше местных потерь h1>>Σhm , поэтому в расчете принимаем:

где k1 –коэффициент, учитывающий потери напора в местных сопротивлениях трубопровода, при расчетах хозяйственно-питьевого водопровода жилых и общественных зданий принимается k1 = 0,3;

h1 потери напора на трение на расчетном участке, м.

где l – длина расчетного участка трубопровода, м;

i – гидравлический уклон.

Σhm = 0,3 = 1,513614 м.

Потери напора на трение по длине трубопровода определяют по формуле:

Σh1= м.

1.4 Выбор счетчика воды и определение потерь напора в нем.

Средний часовой расход холодной воды за сутки наибольшего водопотребления определяется по формуле:

, м 3 /ч,

где q c u – норма расхода воды в час наибольшего водопотребления, л/сут,

Т – время потребления воды, ч,

м 3 /ч.

По расчету принимаем крыльчатый водомер.

Потери напора в счетчике определяются по формуле:

, м,

где S – гидравлическое сопротивление счетчика,

hсч = 0,204 · 0,57 2 = 0,06628м.

1.5 Определение требуемого напора для внутреннего водопровода.

Требуемый напор в наружной сети у ввода в здание определяется по формуле:

где Нг – геометрическая высота подъема воды от отметки гарантийного напора в наружной сети водопровода до отметки диктующего водоразборного устройства, м;

hвв – потеря напора на трение по длине ввода, м,

hсч – потеря напора в счетчике воды, м,

Σh1 – сумма потерь напора на трение по расчетному направлению от водомерного узла до диктующего водоразборного устрой­ства, м, Σh1 = 5,04538м;

Σhm – сумма потерь напоров в местных сопротивлениях, м,

Hf – свободный (рабочий) напор перед диктующим водоразборным устройством, м,

Значение величины Нг определяется по формуле:

где hпл = (Z1пл – Z33) – превышение отметки чистого пола первого этажа z1пл над отметкой гарантийного напора, в качестве которой принимается отметка поверхности земли у здания zзз , м,

hпл = 11,0 – 10,4 = 0,6 м;

nэт – число этажей в здании, шт.,

hэт – высота этажа, м,

hкр – высота расположения крана диктующего водоразборного устройства над полом верхнего этажа, м,

Нг = 0,6 + (3 – 1) · 3,1 + 1,5 = 8,3 м.

Нтр = 8,3 +0,815 + 0,06628 + 5,04 + 1,513614 + 3 = 18,73м.

Условие выполняется, действие системы внутреннего водоснабжения будет обеспечено за счет использования напора в наружной сети водопровода, подбор повысительной насосной установки не требуется.

2. Расчет сети внутренней канализации.

2.1 Определение расчетного расхода сточных вод.

Определяем минимальную глубину заложения канализационных трубопроводов:

где hпром – глубина промерзания грунта, м,

l = 0,3 м для труб диаметром менее 500 мм,

l = 0,5 м для труб диаметром более 500 мм,

Гидравлический расчет трубопроводов производится, назначая скорость V [м/с] наполнения H/d таким образом, чтобы выполнялось условие: . К = 0,6 – для труб чугунных и керамических.

Для определения расчетного расхода сточных вод через стояк предварительно необходимо:

– определить число жителей, обслуживаемых стояком U = 55,8 чел.;

– принять секундный расход воды санитарным прибором (ванной со смесителем) qo tot = 0,25 л/с;

– принять расход сточных вод от санитарного прибора (унитаза) qo s = 1,6 л/с;

– принять общую норму расхода воды одним потребителем в час наибольшего водопотребления qhr,u tot = 12,5 л/с.

Вероятность действия санитарных приборов определяется по формуле:

.

== 0,01076;

где N – число приборов,

В зависимости от произведения N·P tot определяется коэффициент α.

Общий максимальный секундный расход воды на расчетном участке сети определяют по формуле:

q tot =5·0,25·0,378=0,47 л/с.

Расчетный расход сточных вод через стояк определяется:

1) при q tot > 8 л/с: расход стояка q s ст = q tot , л/с;

2) при q tot 8 л/с: расход стоякаq s ст = q tot + qo s , л/с.

Расход сточных вод через выпуски, объединяющие несколько стояков, определяется по формуле:

Самостоятельный гидравлический расчет трубопровода

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Читайте также:  Отделка стен гипсокартоном: правила монтажа и способы последующего оформления

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:

В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:

Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:

Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:

Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d 2 ) = ((4·0,022) / (3,14·[0,024] 2 )) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w 2 /(2·g)]) = (0,028·32) / (0,024·[48,66] 2 ) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

Потери напора на местные сопротивления определяется как разность:

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10 -5 .

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

Полученное значение потери напора носителя на трение составят:

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3 ):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3 ) = 200000

Согласно рассчитанному значению Re, причем 2320 0,25 = 0,316/200000 0,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w 2 /(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал – сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м 3 /час = 0,005 м 3 /с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5

d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6

d = 5 √1,16·10 -6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м 3 /час и Q2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м 3 /час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м 3 /час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Читайте также:  Какие бывают прищепки для штор: виды и формы

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.

диаметр трубы d = 0,25 м;

расход Q = 100 м 3 /час;

μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).

Решение задачи:

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6 ) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.

Расчет необходимого давления воды в трубопроводе: для чего это нужно и как производится

Комфорт в доме трудно представить без водопровода. А появление новой техники в виде стиральной, посудомоечной машин, бойлера и прочих агрегатов ещё больше повысило его роль в жилье образца 21 века. Но эти агрегаты требуют, чтобы вода поступала из водопровода с определённым напором. Поэтому человек, решивший обустроить свой дом системой водоснабжения, должен знать, как произвести расчёт требуемого давления воды в трубопроводе, чтобы все устройства работали нормально.

Для нормального функционирования водопровода давление в нем должно соответствовать нормам

Определение показателя

Давление в трубопроводе принято подразделять на следующие виды: рабочее, условное, пробное и расчётное. Без знания их отличий произвести расчёт перепада давления транспортируемой по инженерной коммуникации жидкости будет сложно. Соответственно, при подборе подходящих элементов водопровода хозяин столкнётся с трудностями, не позволяющими обеспечить комфортное пребывание в жилом помещении.

  1. Рабочее. Это наружное или внутреннее, обязательно максимальное избыточное давление, фиксируемое при стандартных составляющих протекания процесса транспортировки воды в нормальных условиях.
  2. Условное. Используют этот показатель при расчёте прочности трубопроводов (и сосудов), которые функционируют под определённым давлением при температуре воды 20˚С.
  3. Пробное. Этот простой показатель измеряется во время испытания конструкции. На его основе отслеживается поведение элементов системы при изменении давления в водопроводе. Такой подход служит своего рода генеральной страховкой перед прокладыванием сети.
  4. Расчётное. Под таковым подразумевается максимальное избыточное давление в полости трубопровода, продуцируемое транспортируемым по нему веществом. Следует учитывать, что воздействию подвергаются не только трубы, но и все элементы, входящие в состав инженерной коммуникации. Именно на основе расчётного давления определяется толщина стенки водопроводной трубы. От этого зависит функциональность, а также длительность эксплуатации системы и, конечно же, безопасность обитателей дома.

Напор воды в кране зависит от давления в водопроводной системе

Простой пример расчета давления в трубе

Как известно, не так давно водопровод подключался к водонапорной башне. Благодаря именно этому сооружению в сети водопровода создаётся давление. Единица измерения данной характеристики – атмосфера. Причём, размер расположенной вверху башни ёмкости не влияет на значение этого параметра, он зависит только лишь от высоты башни.

Полезно знать! На практике давление измеряется в метрах водяного столба. При заливании воды в трубу высотой 10 метров, в нижней точке будет фиксироваться давление, равное одной атмосфере.

Рассмотрим пример с домом в 5 этажей. Его высота – 15 метров. То есть на один этаж приходится 3 метра. Башня высотой 15 метров создаст на первом этаже давление 1,5 атмосферы. Значение этого показателя в трубе на втором этаже будет уже 1,2 атмосферы. Получается это вычитанием из числа 15 высоты одного этажа – 3 метра, и делением результата на 10. Проделав дальнейший расчёт, нам станет понятно, что на 5-м этаже давление будет отсутствовать. Логика подсказывает, что для обеспечения водой людей, проживающих на последнем этаже потребуется соорудить более высокую башню. А если речь идёт, например, о 25-этажном доме? Возводить такие большие сооружения никто не будет. С этой целью современные системы водоснабжения оборудуются глубинными насосами.

Давление на выходе подобного агрегата высчитывается очень просто. Например, если глубинный насос, мощности которого хватает поднять воду до отметки 50 метров водяного столба, погрузить в скважину на 15 метров, на уровне поверхности земли он создаст давление 3,5 атмосферы (50-15/10 = 3,5).

Обеспечить необходимый показатель давления в системе можно при помощи насоса

Как рассчитывается толщина трубы от действия давления

Когда вода движется по трубе, возникает сопротивление от трения её о стенки, а также о различные преграды. Это явление получило название гидравлическое сопротивление трубопровода. Его численное значение находится в прямой пропорциональной зависимости от скорости потока. Из предыдущего примера мы уже знаем, что на разных высотах давление воды различно, и эту особенность следует учитывать при расчёте внутреннего диаметра трубы, то есть её толщины. Упрощённая формула для вычисления данного параметра по заданной потере напора (давления) выглядит так:

Двн = КГСопр×Дл. тр./ПД×(Уд.вес×Ск/2g),

где: Двн. – внутренний диаметр трубопровода; КГСопр. – коэффициент гидравлического сопротивления; Дл.тр — длина трубопровода; ПД – заданная или допускаемая потеря давления между конечным и начальным участками магистрали; Уд.вес. – удельный вес воды — 1000 кг/ (9815 м/; Ск. – скорость потока м/сек.; g – 9,81 м/сек2. Всем известная константа — ускорение силы тяжести.

Потеря давления в арматуре и фасонных частях трубопровода с достаточной точностью определяется по потерям в прямой трубе эквивалентной длины и с таким же условным проходом.

Как рассчитать стенки трубы по давлению

Точный расчёт данного показателя стальных труб, которые работают под воздействием избыточного внутреннего давления, включает два этапа. Сначала вычисляется так называемая расчётная толщина стенки. Затем к полученному числу прибавляется толщина износа от коррозии.

Расчет давления необходим для подбора толщины стенок трубы

Совет! Изготавливая и монтируя трубопровод, не устанавливайте отдельные случайные вставки. Чтобы не спровоцировать аварию, работайте только с теми, размеры которых совпадают с расчётными.

Таким образом, обобщённая формула для расчёта толщины стенок выглядит следующим образом:

где: Т – искомый параметр – толщина стенок; РТС – расчётная толщина стенок; ПК — прибавка на коррозионный износ.

Расчётную толщину стенки в зависимости от давления вычисляем по следующей формуле:

где: ВИД – внутреннее избыточное давление; Днар. – наружный диаметр трубы; ДР — допустимое напряжение на разрыв; КПШ – коэффициент прочности шва. Его значение зависит от технологии изготовления труб. На завершающем этапе расчета стенки трубы по давлению прибавляем к РТС значение параметра ПК. Берётся оно из справочника.

Давление и диаметр трубы

Правильное определение сечения труб не менее важно, чем их выбор по материалу изготовления. При некорректном расчёте диаметра и давления, в трубе возникнет турбулентность воздуха, в ней присутствующем, и в потоке воды. Из-за этого движение жидкости по трубе будет сопровождаться повышенным шумом, а на внутренней поверхности ветки водоснабжения сформируется большое количество известковых отложений. Кроме того, следует помнить, что существование зависимости давления от диаметра трубы может негативно отразиться на пропускной способности водопровода. На практике, многие обитатели квартир и домов сталкивались с ситуацией, когда при одновременном включении нескольких кранов напор воды резко падал. Возникает эта неприятность по двум причинам: когда давление упало во всей системе и при заниженном диаметре подключённых труб.

От диаметра трубы зависит пропускная способность водопроводной сети

Ниже приведена таблица для максимального расчётного расхода воды через трубопроводы наиболее распространённых диаметров при различном значении давления.

Таблица 1

Расход
Ду трубы80503220мбар/м0,3 м/секРасчёт домашнего водопровода

С практической точки зрения давление в водопроводе чаще всего ассоциируется с объёмом поставляемой воды за единицу времени, то есть с пропускной способностью ветки водоснабжения. В этом контексте и будет рассмотрен вопрос расчёта бытового водопровода. После изучения паспортных данных приборов и агрегатов, потребляющих воду, суммируется общий расход. Затем к полученной цифре добавляется расход всех установленных и используемых водоразборных кранов.

Для домашнего водопровода, работающего от скважины, выбор труб зависит от мощности насоса

Полезная информация! Одно такое сантехническое устройство пропускает через себя за одну минуту порядка 5-6 литров воды.

После этого все числа суммируются, и на выходе получается общий расход в доме воды. С учётом этих данных, покупается труба с диаметром, который обеспечит нужным давлением и, соответственно, количеством воды все водоразборные приборы, работающие одновременно.

Если домашний водопровод планируется подключить к городской сети, у хозяина выбора нет, он будет вынужден пользоваться тем, что имеется. Иное дело, если речь идёт о частном доме, питающимся от скважины. Тогда следует покупать насос, способный обеспечить водопровод давлением, которое соответствует расходам. Выбор производится по паспортным данным подобного агрегата. В определении диаметра вам поможет ниже размещённая таблица.

Таблица 2

Пропускная способность трубы
Пропускная способность, л/минДиаметр трубы75325025
25Меньше 10

Здесь приведены параметры лишь наиболее часто используемой трубной продукции.

Современные средства

Если нет времени либо вы не склонны к математике, рассчитать расход воды через трубопровод с учётом перепада давления можно, воспользовавшись онлайн калькулятором. Интернет изобилует сайтами с таки инструментарием. Чтобы произвести гидравлический расчёт, необходимо учесть коэффициент потерь. Такой подход предполагает выбор:

  • падения напора на погонный метр трубопровода;
  • длины участка;
  • внутреннего диаметра трубы;
  • вида и материала водопроводной системы (пластмасса, железобетон, асбоцемент, чугун, сталь). Современные онлайн калькуляторы учитывают даже, например, меньшую шероховатость пластиковой поверхности по сравнению со стальной;
  • способа расчёта сопротивления.

Кроме того, пользователю доступны опции учёта дополнительных характеристик трубопроводов, в частности, таких, как тип покрытия. Например:

  • цементно-песчаное, нанесённое различными методами;
  • внешнее полимерцементное или пластиковое;
  • новые или проработавшие определённый срок трубопроводы с битумным покрытием либо без защитного внутреннего покрытия.

Если расчёт будет сделан правильно, при условии выполнения монтажа с соблюдением всех требований к водопроводу нарекания не возникнут.

Ссылка на основную публикацию