Как подключить лампу накаливания плавно

5 схем плавного включения ламп накаливания

Внимание! Рассматриваемые устройства имеют на элементах сетевое напряжение и требуют особой осторожности при сборке и наладке.

Тиристорная схема

Данную схемку можно рекомендовать для повторения. Она состоит из распространенных элементов, пылящихся на чердаках и в кладовках.

В цепи выпрямительного моста VD1, VD2, VD3, VD4 в качестве нагрузки и ограничителя тока стоит лампа накаливания EL1. В плечах выпрямителя установлен тиристор VS1 и сдвигающая цепочка R1 и R2, C1. Установка диодного моста обусловлена спецификой работы тиристора.

После подачи напряжения на схему, ток протекает через нить накала и попадает на выпрямительный мост, далее через резистор происходит зарядка емкости электролита. При достижении напряжения порога открывания тиристора, он открывается, и пропускает через себя ток лампочки накаливания. Получается постепенный, плавный разогрев вольфрамовой спирали. Время разогрева зависит от емкости конденсатора и резистора.

Симисторная схема

Симисторная схема одержит меньше деталей, благодаря использованию симистора VS1 в качестве силового ключа. Элемент L1 дроссель для подавления помех, возникающих при открывании силового ключа, можно исключить из цепи. Резистор R1 ограничивает ток на управляющий электрод VS1. Время задающая цепочка выполнена на резисторе R2 и емкости C1, которые питаются через диод VD1. Схема работы аналогична предыдущей, при заряде конденсатора до напряжения открывания симистора, он открывается и через него и лампу начинает протекать ток.

На фото ниже предоставлен симисторный регулятор. Он кроме регулирования мощности в нагрузке, также производит плавную подачу тока на лампу накаливания во время включения.

Схема на специализированной микросхеме

Микросхема кр1182пм1 специально разработана для построения всевозможных фазовых регуляторов.

В данном случае, силами самой микросхемы регулируется напряжение на лампочке накаливания мощностью до 150 ватт. Если нужно управление более мощной нагрузкой, большим количеством осветителей одновременно, в цепь управления добавляется силовой симистор. Как это выполнить смотрите на следующем рисунке:

Использование данных устройств плавного включения не ограничиваются только лампами накаливания, их так же рекомендуется устанавливать совместно с галогеновыми на 220 в. Аналогичные по принципу действия устройства устанавливаются в электроинструменты, запускающие плавно якорь двигателя, также продлевая срок службы прибора в несколько раз.

Важно! С люминесцентными и светодиодными источниками устанавливать данное устройство категорически не рекомендуется. Это связано с разной схемотехникой, принципом действия, и наличием у каждого устройства собственного источника плавного разогрева для компактных люминесцентных ламп или отсутствии потребности в данном регулировании для LED.

Напоследок рекомендуем просмотреть видео, в котором наглядно рассматривается еще одна популярная схема сборки прибора — на полевых транзисторах:

Теперь вы знаете, как сделать устройство плавного включения ламп накаливания на 220 В своими руками. Надеемся, схемы и видео в статье были для вас полезными!

Рекомендуем также прочитать:

«Вечная лампа» накаливания своими руками

Декларируемый производителями гарантийный срок службы обыкновенной лампы накаливания составляет 1000 часов. Это около 40 суток непрерывной работы. Но на практике «лампочка Ильича» служит намного дольше. И благодаря этому популярность её среди потребителей не снижается. Единственное уязвимое место лампы — вольфрамовая спираль, которая чувствительна к резким перепадам напряжения в сети. Но существуют несложные приспособления, которые устраняют этот риск, сглаживают неровности подачи тока.

Принцип работы УПВЛ

Устройство плавного включения применимо для ламп накаливания, имеющих вольфрамовую нить. Кроме ряда бытовых ламп, в эту категорию включаются и галогенные светильники, которые используются в мощных прожекторах. Принцип действия устройства заключается в замедлении подачи напряжения на спираль накала в момент включения. Это даёт возможность плавного разогрева спирали, минуя скачкообразную фазу, которая длится сотые доли секунды. Как известно, именно в этот момент чаще всего происходит перегорание. Благодаря действию электронной схемы прибора ток подаётся с постепенным нарастанием, в течение от 1 до 3 сек.

Вольфрамовая нить лампы накаливания при комнатной температуре имеет низкое сопротивление, что приводит к возникновению больших токов и перегоранию спирали во время включения

Самая долго горящая лампа в мире, занесённая в книгу рекордов Гиннеса, зафиксирована в городе Ливермор, штат Калифорния. С 1901 г. и по сегодняшний день эта «столетняя лампа», как её окрестили, непрерывно освещает пожарную часть. Причём за все эти годы выключалась она всего несколько раз на непродолжительное время. Современные исследователи часто приводят её в качестве подтверждения теории «планируемого устаревания».

«Столетняя лампа» была изготовлена ручным способом и имеет углеродную спираль

Устройство плавного включения имеет небольшие габариты и вес. И благодаря этому его можно устанавливать:

  • в защитном колпаке люстры в месте выхода проводов;
  • в подрозетнике выключателя;
  • в распределительной коробке;
  • в пространстве над подвесным или натяжным потолком.

Размеры устройства позволяют осуществлять установку даже в полости подрозетника

Место установки выбирается исходя из доступности и удобства монтажа. Лучшим вариантом считается тот, в котором прибор будет иметь хорошую естественную вентиляцию. Схема подключение проста — устройство врезается в разрыв одного из проводников (фазы или нуля) питающего кабеля.

Устройство плавного включения врезается в разрыв одного из проводов, которые подводятся к светильнику

Если для освещения используются лампы накаливания с рабочим напряжением в 12 В, УПВЛ устанавливается перед понижающим трансформатором. При таком соединении защита от неблагоприятных сетевых перепадов распространяется и на трансформатор, что тоже актуально.

Одним из побочных положительных эффектов плавного зажигания осветительных приборов является смягчение резкого ослепительного света в момент включения. Это оберегает человеческие глаза от излишних перегрузок, особенно когда свет включается в полной темноте.

Прибор УПВЛ не применяется для люминесцентных и светодиодных светильников, так как они работают на других конструктивных принципах.

Для расчёта мощности УПВЛ подсчитывают суммарную мощность потребителей. Практически это выражается в складывании номинальных показателей мощности всех ламп, к которым будет подключаться устройство. Чтобы прибор работал не на пределе своих возможностей, к суммарной мощности прибавляют 20%. К примеру, если в схему предполагается включение 5 ламп по 100 Вт, то их общая потребительская мощность составит 500 Вт. К этому числу добавляют 20% — 100 Вт и получают искомое значение мощности УПВЛ — 600 Вт.

Устройство плавного включения может устанавливаться внутри распределительной коробки

В сети магазинов, торгующих электротоварами, продаются УПВЛ, производимые в заводских условиях. Среди них есть как отечественные, так и зарубежные модели. Названия могут различаться, но в принципе это пластиковый контейнер с размерами меньшими, чем спичечная коробка. Часто акцент в названии делается на защитную функцию прибора для галогенных ламп. Но прибор вполне применим и для обычных ламп накаливания. Другое возможное название устройства — фазовый регулятор. Обычно так называют более мощные УПВЛ с несколько изменённой системой управления. Цена такого устройства может меняться от 300 до 600 рублей в зависимости от номинальной мощности.

Устройство плавного включения лампы запрещено применять для плавного запуска двигателей электроинструментов и других бытовых приборов.

Тем же, кто владеет базовыми знаниями в радиоэлектронике, можно предложить самостоятельное изготовление УПВЛ. Вот несколько схем, с помощью которых можно продлить жизнь осветительной лампы во много раз.

Тиристорная схема

В тиристорной схеме используются простые и доступные детали. Основой служит тиристор VS1 и четыре диода VD1 — VD4, соединённые в выпрямительный мост. Кроме того, понадобится конденсатор C1 ёмкостью 10 мкФ и резисторы R1 (переменной ёмкости) и R2.

В тиристорной схеме подача напряжения на лампу производится по прошествии времени, которое задаётся переменным сопротивлением R1

При подаче напряжения электрический ток проходит сквозь спираль лампы и выпрямляется в диодном мосте. После прохождения резистора начинается зарядка конденсатора. Достигая порога напряжения, тиристор открывается, и через него течёт ток лампы. В итоге происходит постепенный накал нити вольфрама. При помощи резистора переменной ёмкости R1 можно регулировать время «разгона» лампы.

Симисторная схема

Использование симистора VS1 в качестве силового ключа приводит к тому, что в схеме используется меньшее количество деталей.

Принцип работы симисторной схемы аналогичен тиристорной, но она содержит меньше деталей

Дроссельный элемент L1 служит для подавления помех при отмыкании силового ключа. По большому счёту его при необходимости можно исключить из схемы. Цепочка, задающая время, состоит из сопротивления R2 и конденсатора C1, питающихся через диод VD1. Сопротивление R1 снижает ток на электроде управления VS1. Принцип действия цепи подобен предыдущей — создаётся временная пауза на время заполнения ёмкости конденсатора, симистор открывается и через него протекает ток, питающий лампу EL1.

Прибор на основе схемы симисторного регулятора с конденсатором переменной ёмкости имеет компактные размеры из-за небольшого количества деталей

Схема на специализированной микросхеме

В основе цепи лежит специализированная микросхема КР1182ПМ1(или DIP8 в импортном варианте), снабжённая двумя тиристорами и двумя системами их управления. Ёмкость C3 и сопротивление R2 регулируют продолжительность времени включения (выключения). Для разделения управляющей и силовой части служит симистор VS1, ток на управляющем электроде задаёт сопротивление R1. Наружные ёмкости C1 и C2 устанавливаются для регулировки работы тиристоров внутренней цепи микросхемы. Для защиты от помех применены резистор R4 и конденсатор C4.

УПВЛ на основе специализированной микросхемы не только плавно включает, но и выключает лампу с небольшой задержкой, ещё более увеличивая срок её службы

Во время подключения устройства к линии подачи напряжения на лампу контакты выключателя SA1 должны находиться в замкнутом положении. Конденсатор С3 набирает ёмкость при размыкании контактов SA1. Во время постепенного увеличения тока через сопротивление R1, управляющего силовым ключом на выходе ИМС, происходит плавный запуск симистора VS1 и лампы EL1, соединённой с ним последовательно.

Примечательно, что эта схема не только замедляет накал спирали во время включения, но и затормаживает её потухание. Лампа гаснет так же плавно, как и загорается. Длительность задержки устанавливается на стадии сборки прибора путём подбора ёмкости конденсатора C3. При желании можно увеличить задержку пуска лампы до 10 сек. Плавность отключения регулирует сопротивление R2.

Не следует путать устройство плавного включения лампы с диммером. УПВЛ — это автоматический регулятор, плавно повышающий ток на осветительном приборе в момент включения. Диммер — это прибор, при помощи которого осуществляется ручная настройка яркости освещения.

Характерным свойством УПВЛ и фазных регуляторов считается то, что прибор понижает выходное напряжение на лампу (с 230 до 200 В). Это дополнительно увеличивает её срок службы.

Читайте также:  Какие шторы сейчас в моде?

Видео: устройство плавного включения лампы на полевых транзисторах

Применение устройства плавного включения

Установка прибора не требует высокой квалификации. Справиться с монтажом под силу любому человеку, владеющему отвёрткой и индикатором напряжения. В кабеле, ведущем к лампе, делается разрыв одного — фазного или нулевого — провода и к нему подсоединяется прибор. Крепление проводов лучше всего осуществлять при помощи клеммников, так как это даёт гарантию устойчивого и надёжного соединения. Если применить клеммники возможности нет, рекомендуется спаять скрутки оловянным припоем.

Эксплуатация УПВЛ не предполагает дополнительного к себе внимания. Заводские модели сопровождаются гарантийными обязательствами до 3 лет. На практике они работают гораздо дольше.

Во время сборки устройства не следует забывать о том, что высокое напряжение сетевого тока может причинить вред здоровью человека. Перед соединением проводов необходимо убедиться в отсутствии тока в кабеле питания лампы.

Видео: как работает фазовый регулятор на симисторах

Устройство плавного включения лампы экономит не только расход электроэнергии, но и расход денег на покупку перегорающих светильников.

Устройство для плавного включения ламп накаливания

В век энергосберегающих и светодиодных ламп многие подзабыли уже, как пользовались простейшими лампами накаливания для освещения жилья. Но есть еще те, кто не отказался от такого вида световых приборов. Конечно, они не столь высокотехнологичны и экономичны как КЛЛ или LED, однако добиться увеличения их долговечности и уменьшения энергопотребления все же можно. Возможен вариант включения в схему устройства плавного включения ламп накаливания (УПВЛ) или установка диммера.

Проблема в том, что при щелчке выключателя (резкой подаче напряжения) нить накаливания сильно изнашивается, т. к. сопротивление остывшей спирали значительно ниже, а значит и ток, поступающий на нее в момент нагрева, будет высоким (до 8 ампер). Попробуем разобраться, каков принцип работы таких устройств, помогающих прибавить жизни лампе накаливания, и как они устроены.

Принцип работы

Блок питания

Для меньшего износа нити накаливания необходимо сгладить скачок, т. е. обеспечить плавное включение и выключение ламп накаливания. Значит, нужно оптимальное соотношение температуры спирали и напряжения, что приведет к нормализации режима и, как следствие, сохранению работоспособности светового прибора на более долгий срок. Помочь может схема плавного включения ламп накаливания, если конкретно – нужно использовать специальный блок питания. В течение короткого времени нить накала разогреется до необходимого предела как температуры, так и напряжения, установленного человеком.

Схема на основе симистора

Такая схема прибора для плавного включения ламп накаливания содержит мало элементов благодаря тому, что силовым ключом в ней выступает симистор (к примеру, КУ208Г). В ней хотя и желательно, но не принципиально присутствие дросселя (в отличие от более сложной схемы на основе простого тиристора). Резистором R1 (на схеме выше) обеспечивается ограничение тока на симистор. Время накала задается цепочкой из резистора R2 и конденсатора в 500 мкФ, питание на которые идет от диода.

Когда напряжение в конденсаторе достигает уровня открытия симистора, ток проходит через него, производя запуск потребителя (источника света). Таким образом, создаются условия для постепенного розжига нити накаливания, т. е. плавное включение света. В момент отключения питания происходит медленный разряд конденсатора, в результате чего плавно выключается лампа.

На основе микросхемы

Разработанная для изготовления различных регуляторов микросхема КР1182ПМ1 как нельзя лучше подходит для сборки своими руками устройства плавного включения и выключения ламп накаливания. В случае использования такой схемы практически никаких усилий прилагать не придется, т. к. КР1182ПМ1 будет сама регулировать плавную подачу напряжения на осветительный прибор до 150 Вт. Если же мощность потребителей выше, в схему включается симистор. Неплохо подойдет для этой цели ВТА 16-600.

Многие из нас были свидетелями того, как лампочка «бахает» – перегорает при включении. Это происходит, потому что слишком резкие амплитуды при включении сильно изнашивают нить накала. В нерабочем состоянии сопротивление будет довольно низким. При нагреве во время обычного включения света по спирали сразу начинает идти довольно высокий ток, до 8 ампер. Высокий ток при подаче напряжения заставляет работать спираль на пределе возможностей, и срок эксплуатации лампочки уменьшается.

Подключение с использованием блока защиты

Обычно для решения этой проблемы используется блок защиты, который и выполняет функцию УПВЛ. При использовании с лампами накаливания данного устройства напряжение при включении возрастает не так резко, а постепенно повышается. Таким образом, нить накаливания не испытывает излишних перегрузок, и срок эксплуатации лампочки возрастает.

Рассмотрим подробнее схему работы этого устройства на примере блока Uniel Upb-200W-BL, последовательно подключенного к лампе накаливания в 75 Вт. В этой схеме ток сначала проходит через блок и уже потом идет на лампу. В результате этого происходит дополнительное падение напряжения, и на лампу поступает не стандартные 220, а 171 В. Причем за счет прохождения тока через блок защиты рост напряжения до 171 В происходит плавно за 2-3 секунды.

Снижение поступающего напряжения также способствует увеличению сроку эксплуатации лампочки. Но, с другой стороны, пониженное напряжение значительно снижает световой поток, примерно, на 70 процентов, а это существенный показатель. Поэтому при использовании блока защиты необходимо учитывать потери по освещенности и использовать более мощные, по сравнению с обычными, лампы.

Рассматриваемый в нашей схеме блок может выдерживать мощность до 200 Вт, значит, к нему можно подключать лампы примерно такой же мощности. Но лучше задать небольшой запас в 20-25 процентов и использовать в схеме лампы с суммарной мощностью не более 160 Вт. За счет запаса мощности лампы и сам блок прослужат дольше. Естественно, что и на сам блок не стоит подавать напряжение больше, чем 200 ВТ.

Обратите внимание! При понижении мощности лампы накаливания цветовая температура изменяется, и свет становится более красным. Изменения цвета освещения может сказаться на самочувствии человека.

Схема плавного включения ламп накаливания довольно простая. Блок устанавливается последовательно от выключателя к лампе, то есть в разрыв фазного провода.

Читайте также:  Особенности оформления офиса рекламного агентства

Сам блок зашиты можно разместить в двух местах:

  1. рядом с осветительным прибором;
  2. у выключателя – в этом случае блок располагается в распределительной или установочной коробке.

Выбор места зависит от размеров блока защиты, для слишком большого прибора придется выделять отдельное место. Недостаток размещения в подрозетнике состоит в том, что блок зашиты не будет иметь достаточного доступа воздуха для охлаждения.

Внимание! Блок защиты нельзя устанавливать в помещениях с повышенной влажностью.

Как изготовить блок защиты самостоятельно

Для создания блока можно применить следующую схему.

Устройство работает по следующему принципу:

  1. Сначала полевой транзистор закрыт. На него идет стабилизационное напряжение. Лампа не горит;
  2. При поступлении напряжение от резистора R1 и диода VD 1 конденсатор С1 заряжается до 9,1 В. Это максимальный уровень, который ограничивается параметрами стабилитрона;
  3. Когда заданное напряжение достигнуто, транзистор постепенно открывается, а сила тока увеличивается. На стоке напряжение понизится. Нить накаливания лампы начнет плавно разжигаться;
  4. Второй резистор контролирует степень разрядки конденсатора. За счет этого резистора конденсатор может продолжить разряжаться и после выключения питания.

Важно! Проводить самостоятельную установку любых электроустройств необходимо с точным соблюдением нормативов правил безопасности.

Использование данного блока защиты позволяет не только осуществлять плавный пуск ламп накаливания, но и предохранить их от неприятного мерцания во время работы светильника.

Использование диммирования

Плавное включение ламп накаливания также может быть выполнено диммерами или светорегуляторами. Название диммер произошло от английского «dim», что означает затемнять. Здесь уровень подачи напряжения регулируется автоматическим или механическим (за счет вращения ручки) способом. У простых диммеров схема управления построена на реостате – переменном резисторе. Сейчас для этих целей используются полупроводниковые симмисторные или транзисторные ключи. В современной электротехнике для плавного включения ламп накаливания 220 Вт преимущественно используются приборы с таймером, сенсором или на дистанционном управлении. Обычно светорегуляторы устанавливаются вместо штатного выключателя.

Важно! При установке диммера на лампы накаливания добиться экономии электроэнергии невозможно. Понижение уровня освещенности на 50 процентов экономит только 15% электричества.

В роторных диммерах накал галогеновых ламп регулируется при повороте ручки потенциометра. В электронных – все параметры задаются автоматически.

Дополнительная информация. Диммер может создавать помехи в работе чувствительных измерительных устройств и радиоприёмников. Использование прибора иногда вызывает дополнительный фон при работе звукозаписывающего оборудования. Все это надо учесть при монтаже устройств.

Собрать простой регулятор можно своими руками.

Схема состоит из:

  • BT134 – симистора на 700 В, который можно заменить на КУ208Г, MAC212-8, MAC8S, BT138 или BT136;
  • DB3 – динистора, также можно использовать КН102, HT40 HT34, HT32, DC34, DB4;
  • неполярного конденсатора с емкостью от 0,1 до 0,22 мкФ (250 В);
  • резистора (10 кОм) с максимальной мощностью от 0,25 до 2 Вт;
  • компактного переменного резистора (уровень сопротивления примерно 500 кОм);
  • проводов для соединения с основной схемой.

Собранное устройство последовательно устанавливают в нулевую фазу провода, идущего к светильнику. Симистор пропускает ток только при определенной разности потенциалов. Накопление заряда идет на конденсаторе, который подключен к симистору. При этом скорость заряда определяется уровнем сопротивления переменного резистора. Сам же уровень этого сопротивления задается пользователем. Чем меньше сопротивление переменного резистора, тем ярче горит лампа.

Достоинством данного самодельного устройства является то, что при работе не происходит падения уровня напряжения, и освещенность не страдает. С другой стороны, плавный пуск галогенной лампы достигается за счет механического поворота симистора, отрегулировать скорость которого сложно. Точные параметры можно задать только на современных автоматических приборах, собрать которые своими руками сложнее.

При выборе диммерного устройства для плавного включения лампы накаливания необходимо учесть, что некоторые виды оборудования начинают работу с минимального значения, когда нить накаливания слегка тлеет. Другие сразу дают существенный скачок, который также приводит к большому перепаду напряжения на лампе.

Использование диммера может привести к повышению уровня магнитострикции и появлению высокочастотного свиста или шума, идущего от лампы накаливания. Это явление характерно для мощных ламп накаливания. Если светильники работают без диммера, то дополнительного звука практически неслышно.

Микросхемы для фазового регулирования

В радиотехнике разработаны специальные микросхемы, основной задачей которых является фазовое регулирование различных параметров. Одна из таких радиокомпонент – это микросхема КР1182ПМ1.

Она служит для плавного запуска ламп накаливания. Причем эта микросхема обеспечивает не только включение, но и плавное выключение прибора. КР1182ПМ1 рассчитана на ток до 150 Вт и имеет несколько выводов:

  • 2 силовых – для последовательного подключения в цепь с нагрузкой;
  • 2 вспомогательных;
  • 2 для регулировочного резистора и других радиокомпонент для управления.

КР1182ПМ1 включается в цепь следующим образом.

При размыкании выключателя S конденсатор С3 начинает плавно заряжаться до значения, которое определяется показателями резистора R2 и уровнем входного тока управляемого преобразователя напряжения в ток (УПНТ) в микросхеме. Выходной ток на УПНТ также плавно растет, а задержка включения тиристоров падает. Таким образом, лампочки включаются постепенно. При замыкании ключа C3 разрядится через R2, и этот процесс также будет происходить плавно.

Плавное включение позволит избежать выхода из строя и маломощных ламп накаливания, ведь проблемы с перегоранием не связаны с уровнем мощности. Даже если в устройстве подключения лампочки на 12В установлены через понижающий трансформатор, без плавного пуска лампа быстрее выйдет из строя.

Видео

Схема для плавного включения ламп накаливания 220в

Вольфрамовая нить лампы накаливания быстро изнашивается, истончается от частых включений и выключений, не каждый может себе позволить часто менять лампы. Решается эта проблема двумя способами. Можно просто реже выключать светильник (наибольший износ происходит при повторном включении лампы накаливания), а можно купить или собрать самостоятельно устройство плавного включения по схеме. О таком самодельном аппарате и пойдёт речь в этой статье.

Принцип действия

Внешне такой регулятор (его ещё называют диммер) выглядит очень просто, пользоваться им легко – вы крутите регулятор в одну сторону – напряжение повышается, лампа накаливания потихоньку разгорается; крутите в другую сторону – регулятор пропускает больше вольт, свет становится ещё ярче.

Главные детали в такой мини-конструкции чаще всего – это так называемые полупроводники, тиристор или симистор.

Рассмотрим несложную схему:

Резисторы R1 и R2. Между ними подключен динистор DB3. Когда напряжение на конденсаторе C1 доходит до предела открытия динистора, на симистор VS1 поступает импульс, и через него идёт ток на лампу.

Вторая схема регулятора напряжения для лампы накаливания. Схема сложней, менее популярна среди радиолюбителей и выглядит, например, так:

Питание из сети 220в по одному проводу поступает на предохранитель (на схеме FU1 5А), по второму на тиристоры VS1 и VS2. Резистор переменного напряжения и тока R2 регулирует выходной сигнал. Через диоды VD1 и VD2 сигнал поступает на электрод одного тиристора, и он становится открытым.

В первой схеме используется симистор, во второй два тиристора.

Такой регулятор включения не подойдёт для люминесцентных и светодиодных ламп; у них внутри есть собственные регулирующие аппараты, автоматически понижающие напряжение, и они будут препятствовать сторонним преобразователям. Для люминесцентных и светодиодных систем изготовляются другие аппараты.

Делаем своими руками устройство плавного включения

Ничего сложного в сборке нет. Даже человек, далёкий от работы с электричеством, сможет собрать регулятор самостоятельно. Главное строго следовать инструкциям и не торопиться.

Подготовительные работы

Для того, чтобы сделать плавное включение ламп накаливания на напряжение 220в, нужно, во-первых, держать перед глазами схему регулятора. Во-вторых, приготовить необходимые детали, которые можно поискать в ненужной аппаратуре, выпаять из схем. Тиристоры и симисторы встречаются в такой технике, как:

  • Старые телевизоры.
  • Дрели и перфораторы.
  • Платы новогодней гирлянды.
  • Бытовые и производственные фены.
  • Зарядные автомобильные устройства.

Тиристоры и симисторы могут пропускать токи как высокой, так и низкой частоты. Потому их можно использовать, например, для трансформатора сварочного аппарата.

Сборка регулятора

Наиболее популярны регуляторы с использованием симистора.

Он имеет пять так называемых p-n переходов и может пропускать ток в обоих направлениях. Когда он открывается, то пропускает через себя часть номинальной мощности. Это своего рода электронный ключ, при большем открытии которого потребитель получает больше мощности.

Итак, начнём по порядку. Нам дополнительно понадобятся:

  • Резистор мощностью на 10 кОм.
  • Динистор.
  • Постоянный резистор на 100 кОм.

Сам симистор нужно выбирать под нагрузку, на которую будет подключено устройство для плавного включения ламп накаливания. Кроме этого, советуем предусмотреть в схеме радиатор, чтобы симистор не перегревался (а греться он может в самом деле сильно).

Делаем в таком порядке:

  • Один провод питающей сети присоединяется к лампочке накаливания, другой – к выводу симистора.
  • От этого же вывода сим-ра – к выводу переменного рез-ра.
  • Второй вывод переменного рез-ра через динистор и потом рез-р (на 10 кОм) идёт на второй вывод сим-ра.
  • Третий контакт сим-ра идёт на второй контакт лампочки.
  • Третий контакт постоянного рез-ра (100 кОм) тоже на второй контакт лампочки.

Меняя положение регулятора, стоящего на переменном резисторе, мы меняем выходное напряжение, и лампочка накаливания разгорается пропорционально этой регулировке.

Таким простым способом мы собрали регулятор яркости лампы накаливания.

Перечисленные пункты можно использовать как краткую инструкцию. Но сначала рекомендуем ознакомиться с видео, из него мы и подготовили для вас выдержки, которые можно выписать, как напоминалку.

Советуем посмотреть видео:

Можно придать регулятору более фирменный вид, заводской, сделать его полноценным.

Рекомендуем посмотреть данное видео:

Применение устройства плавного включения

Встречается во многих сферах энергетики и электротехники.

  • На вентиляторном оборудовании.
  • На конвейерах.
  • В центрифугах.
  • Поршневых компрессорах.
  • И в другой технике.

Схема плавного включения чаще всего применяются для работы освещения или двигателей. Как правило, двигателей асинхронных, переменного тока, с короткозамкнутым ротором.

В заключение

Каждая часть электрического аппарата должна, на наш взгляд, использоваться по максимуму. Ведь лампы могут служить дольше, старые схемы из сломанной аппаратуры могут применяться как запчасти. Отработавшую технику принимают также в специальные пункты приёма электроники и электроаппаратуры.

Ждём ваших комментариев! Делитесь статьёй в социальных сетях, чтобы больше людей заинтересовались повторным использованием электроники и не только электроники!

Читайте также:  Оконные откосы делаем своими руками

Лада Гранта Ksilona › Бортжурнал › Плавный розжиг ламп накаливания

Решил себе сделать плавное включение ламп ближнего света и ДХО. Источником информации для меня послужила запись одного человека с драйва, ссылку дать не могу, так как сейчас она не доступна, возможно удалили страницу. Он предложил использование реле и терморезистора.

Что нам понадобится:
— реле song chuan 102-1СН-С или любое другое, выпаял из поврежденной сигналки;
— терморезистор 20S050M на 5 ОМ и 7 А.

А вот и сама схема

Принцип работы: у реле используется нормально разомкнутая группа, питание подается на один из разомкнутых контактов и на терморезистор, резистор греется и пропускная способность увеличивается, на выходе напряжение начинает возрастать от 0В, лампочка потихоньку разгорается, также напряжение на реле поднимается до того момента пока оно не сработает и после ток уже идет напрямую на лампу, а реле само себя поддерживает.

Контакты реле: 1 и 2 катушка, 3 и 4 нормально замкнутая группа, 3 и 5 нормально разомкнутая группа.

Собранное реле для ДХО, оно подключается в разрыв провода. Зеленый провод вход питания от переключателя, белый — выход на лампы, черный — масса. Обе ходовые лампы потребляют не больше 4 А, поэтому один терморезистор справится.

Контакты закрыл термоусадкой, подложил паралонку под низ и замотал изолентой.

Подключение произвел прям у разъема МУСа в разрыв желто-синего провода, а реле повесил на балку.

Для ближнего света пришлось разделиться, для каждого борта ставил отдельное реле, так как только одна лампа потребляет почти 5 А.

Принцип подключения тот же самый.

Релюшки повесил под блоком предохранителей, а подключил там же на сером разъеме, на жгуте идущем под капот, к серому и серо-черному проводам.

А теперь видео-презентация.

Тут может заметили, что правая (по видео) разгорается чуть быстрее, резисторы не совсем точные получились.

Итог работы: лампы включаются плавно и срок их службы увеличен, пока посмотрю как будут работать с родными лампами, а в дальнейшим хочу поставить лампы с увеличенной яркостью, у них ресурс меньше, а так может дольше проходят.

По поводу терморезисторов: они работают только на момент разгара, до включения реле, далее ток идет по пути меньшего сопротивления через контакты реле. Во время запуска они греются и при первом включении если держать их пальцами то температуру можно выдержать, а при двух и более включений подряд температура увеличивается, да и плавность включения уже меньше, так как резисторы еще не остыли.

Недостаток: при езде ночью и при переключении с дальнего на ближний, будет провал в освещении, пока ближний не разогреется, а это очень опасно!

Решение проблемы.
Сделал задержу отключения дальнего света, то есть повесил конденсатор на реле дальнего света. Теперь при переключении с дальнего на ближний свет, дальний еще пару секунд горит, включается ближний и тут же отключается дальний.

Взял 3 конденсатора: 2 на 2200мкФ и 1 на 1000 мкФ, на 16 В.
Соединил конденсаторы параллельно, подключил на колодке переключателя поворотников к коричнево-белому проводу, он идет на включение реле дальнего света, массу кондеров посадил на кузов под болт.

Результат:
— если включать только при включенном зажигании: напряжение бортсети 12,6 В поэтому кондеры тоже зарядятся до этого напряжения и при переключении с дальнего на ближний будет пауза на долю секунды;
— если включать на заведенном двигателе: напряжение бортсети уже 14,5 В поэтому кондеры тоже зарядятся до этого напряжения и при переключении с дальнего на ближний паузы не будет.

Наглядный пример:
Пример 1. Машинка путем не прогрета, свет еще не включался, сразу только дальний включил и прям одновременно получается, гаснет дальний и сразу включается ближний.

Пример 2. Салон прогретый, ехал до дома на ближнем, терморезисторы не под питанием, нагреты до салонной температуры, потом стоял еще на дальнем свете, и при переключении с дальнего на ближней паузы нет, а наоборот включается ближний и затем выключается дальний.

Такую разницу объяснить могу лишь тем, что в прогретом салоне терморезисторы быстрее нагреваются при включении.
А по идеи, вообще можно еще поднять емкость конденсаторов, но у меня уже закончились такие крупные. Проверял в поездке в деревню, пробовал несколько раз, все работает по примеру 2. Так меня все устраивает, неудобств замечено не было.

Лада Гранта 2014, двигатель бензиновый 1.6 л., 82 л. с., передний привод, механическая коробка передач — тюнинг

Машины в продаже

Лада Гранта, 2019

Лада Гранта, 2020

Лада Гранта, 2020

Лада Гранта, 2020

Смотрите также

Комментарии 60

У меня так ксенон разгорался, блоки розжига такие были, что ночью по трассе при переключении пару секунд ехал вслепую, в итоге надоело, и поставил обычные:D

Да, жесть))
Я думал как иначе сделать, но пока ничего лучше не придумал)

а, гоню! тут же на D2 было! реле с достаточно высоким порогом срабатывания (7В, кажется), вместо терморезистора — обычный резистор 1,1Ом 10Вт, в остальном схема не отличается)
пока лампа не нагрелась — на резисторе падает более 5В и реле не включается)) как подогреется немного — на реле уже появляются достаточные для него 7В, оно включается и подаёт полное напряжение на лампу.
подбором сопротивления и порога срабатывания реле можно регулировать и ток и время прогрева в довольно широких пределах)

надо не терморезистор, а что-то, что будет давать всегда одинаковую задержку, например емкость и сопротивление, а реле взять с высоким порогом срабатывания))

И терморезистора хватит, разогревать лампы надо после простоя или с ночи. Время разогрева в этот момент достаточно, а когда они теплые то и разогревать особо не нужно. Незачем лишнего заморачиваться с этим резистором, я эти терморезисторы и то в другом городе брал, тут вообще нет радиодеталей…(

не, с терморезистором, как раз, проблема в том, что он в разных условиях по-разному отрабатывает. да и по факту он там не нужен — лампа и есть терморезистор, причём измеряющий как раз интересующую нас температуру спирали, а не окружающей среды!

а лампы любые надо разогревать, и тёплые тоже — смысл именно в токе через нить, пока она не накалилась!
пока нить не светится — сопротивление её крайне мало, из-за чего “пусковой” ток лампы накаливания достаточно высок. со временем нить деформируется, и где-нибудь на ней образуется тонкое место — которое тоньше, чем вся остальная проволока… этого достаточно, чтобы при старте большой ток, проходящий через холодную ещё спираль с низким сопротивлением, нагрел это место уже слишком сильно — нить плавится, лампа перегорает.
разница в сопротивлении нити температурой, допустим, -20 градусов, +20 или +50 — я думаю, настолько ничтожна, что её не так-то просто даже измерить) вот при +500…700 градусах уже другое дело — сопротивление появляется, и довольно заметное. соответственно, задача — ограничить ток через лампу до тех пор, пока она не начнёт немного светиться. так вот это и достигается обычным резистором и релюшкой с относительно высоким порогом срабатывания (например, 7…10В при номинале в 12…15В). получается, что пока лампа холодная — она запитывается через резистор, который ограничивает через неё ток, экономя её ресурс и не давая ей сгореть, а как поднагреется — на ней начинает падать достаточно напряжения для срабатывания параллельно подключенной релюхи. реле срабатывает и шунтирует резистор — на лампу подаётся полное напряжение. имхо, это самая лучшая, надёжная и эффективная схема, дающая 100% результат и не имеющая особых недостатков) задержка там может быть очень маленькой (для нормального разогрева лампе надо времени всего где-то 0,2…0,5с), соответственно можно даже особо не париться с дальним — при “моргании” дальним, конечно, обратное переключение на ближний будет чуть более заметным, но это, я думаю наоборот даже добавит заметности, но ничем плохо не будет — ну что там эти 0,2с?!)

ну а детали — так терморезисторы ещё да, поди купи… а обычные резюки найти-то куда проще)) старый телевизор раздербанить можно или что-нть подобное)))

Вот расписали))) Знаю как лампочки сгорают, сколько я их наменял, вытаскиваешь лампу, спираль вроде целая, но с деформацией, контрольно на акум тыкаю — молчит.
Спасибо за информацию о использовании резистора, но все равно оставлю термо, т.к. меня все устраивает и лампы функционируют)) Сейчас только подумаю над переключением с дальнего на ближний, все хочется по нормальному

физика рулит, а понимание происходящих процессов даёт возможность решить проблему 😉

с плавным розжигом лампы накаливания могут служить в несколько раз дольше — сам проверял на обычных лампочках 220В 🙂 так что вещь достаточно хорошая) главное, сделать так, чтоб не мешало и работало надёжно)

У меня родные лампы ДХО год проработали, после сделал плавный розжиг и уже почти 2 года светят и спирали целые!))

естественно! с любым плавным розжигом срок службы ламп накаливания увеличивается в разы)

Вот расписали))) Знаю как лампочки сгорают, сколько я их наменял, вытаскиваешь лампу, спираль вроде целая, но с деформацией, контрольно на акум тыкаю — молчит.
Спасибо за информацию о использовании резистора, но все равно оставлю термо, т.к. меня все устраивает и лампы функционируют)) Сейчас только подумаю над переключением с дальнего на ближний, все хочется по нормальному

вот, тут у товарища схемка (www.drive2.ru/l/2462618/)
терморезистор здесь лампа 🙂 резисторы R1 и R2 2.2Ом 5Вт, т.е. 1.1Ом 10Вт получается — отлично работает! 🙂 регулировкой сопротивления можно регулировать время розжига, я думаю даже 0,7…0,8Ома уже вполне будет достаточно — загораться будут быстро, но, тем не менее, плавно) а дополнительный термистор, который меряет температуру воздуха и свою собственную, да ещё и греется в работе — не, не то, не по делу применён и явно лишний.

ps. ещё параллельно лампе можно конденсатор микрофорад на сто, может, где-то, подключить. ёмкость выявить опытным путём — чтобы особо не влияла на время запуска! но лампе поможет)

Ссылка на основную публикацию