Вся правда про филаментные LED лампы: разбираем и замеряем ваттметром и пульсометром

7 секретов светодиодной филаментной лампочки — преимущества и недостатки.

Внешне все филаментные лампы напоминают обычные лампочки накаливания. Первоначально их даже так и называли – светодиодные лампы накаливания.

Однако ввиду противоречий, которые были запрятаны в таком определении, впоследствии в обиход прочно вошло иностранное слово филаментные. Хотя некоторые предпочитают называть их “ретро лампы”.

В буквальном переводе filament – это нить.

Изначально их выпускали только для декоративных целей, никто и не думал такими “светлячками” делать полноценную замену нормальному освещению. Объяснялось это их маленьким световым потоком.

Однако все изменилось в 2013 году. В этот период сразу несколько китайских компаний вывели на рынок филаментные лампы со световым потоком, эквивалентным обычным лампам накаливания в 60Вт.

При этом по своим некоторым характеристикам они оказались намного лучше не только лампочек Ильича, но и обошли многие модели на привычных светодиодах SMD 2835, SMD 5730 и т.д.

Что же такое этот самый филамент, который запрятан в стеклянной колбочке? Филамент – это стержень из искусственного сапфира или керамики, но чаще всего стекла.

На этом стержне размещаются миниатюрные светодиоды, которые соединяются между собой тончайшей золотой проволокой, образуя таким образом последовательную цепочку.

Это что-то вроде светодиодной ленты в миниатюре.

Светодиоды находятся так близко между собой, что в рабочем состоянии вся нить светится равномерно. Никаких отдельных точек не видно.

На концах стержня припаяны контакты для подачи напряжения.

Сверху вся эта конструкция покрыта специальным составом – люминофором.

Он преобразует синий свет кристаллов светодиодов в белый и отвечает за цветовую температуру источника света (теплый, холодный).

    лимонный оттенок нитей – 4500К (нейтральный белый свет)
    насыщенный желтый цвет – 3000К (теплый белый)
    насыщенный оранжевый – 2350К (еще более теплый)

Таким образом, просто взглянув на лампочку можно тут же узнать ее примерную мощность.

    4 нити – 4 Вт
    8 нитей – 8 Вт

Если их больше, то это означает что внутри либо неэффективный драйвер, либо светодиоды работают в жестком режиме и быстро сгорят.

Даже многие известные бренды на лампочках малой мощности прописывают срок службы в 15 000 часов и более, а для мощных, всего 10 000 часов.

Перегорают они следующим образом. Сначала начинают помаргивать и работать как стробоскоп отдельные нити. Светят то ярко, то тускло.

Затем тусклая фаза становится все дольше, пока лампа окончательно не погаснет и перестанет запускаться.

Все филаментные нити крепятся на стеклянной ножке, со штенгелем в виде трубки.

Помимо крепежных функций, через это устройство откачивают воздух из колбы. Через эту же ножку проходят проводники для подачи напряжения.

Так как лампочка все же светодиодная, никак нельзя обойтись без драйвера.

Его запрятали в цоколе E27.

Драйвер необходим для снижения силы тока до рабочего уровня светодиодов.

Из чего обычно состоит качественный драйвер?

    предохранитель
    выпрямитель диодного моста
    сглаживающие конденсаторы
    микросхема импульсного регулятора тока с элементами обвязки (дроссель, диод, сопротивление и высокочастотный конденсатор)

Как работает вся эта схема? После подачи напряжения ток поступает на цоколь светильника (его нижний контакт).

Проходя через предохранитель (F1), он выпрямляется диодным мостом (DB1). Из переменного тока мы получаем постоянный.

Далее вступают в дело конденсаторы (С1-С2) и дроссель (L1). Они сглаживают ток.

Дойдя до микросхемы (U1), он опять проходит преобразование и превращается в высокочастотные импульсы, которые сглаживаются конденсатором. Пробежав всю эту цепочку, ток наконец проходит через светодиоды филаментов и возвращается обратно в сеть.

Стабилизация тока, протекающего через филаменты, происходит через микросхему регулятора с помощью измерительного сопротивления (RS1).

Кроме обычной прозрачной колбы иногда можно встретить модели со специальным напылением. Оно создает более мягкое и теплое освещение.

Так как светодиоды в процессе работы сильно греются, необходимо оперативно отводить от них тепло. В старых светодиодных лампочках это делается через массивные радиаторы, которые существенно увеличивают габариты изделия.

А в филаментных внутри колбы закачан инертный газ на основе гелия. Это тот, при вдыхании которого, вы начинаете на некоторое время разговаривать как маленький ребенок.

Он то и способствует быстрой передаче тепла от кристаллов к стеклянным стенкам и далее в окружающее пространство.

Без газа и стекла сами стержни разогреваются весьма заметно.

А вот оперативный отвод тепла и большая площадь стеклянных стенок, по сравнению с площадью самих светодиодов, позволяют филаментному источнику света не нагреваться более 50-60 градусов.

В то же время попробуйте дотронуться до включенной лампочки накаливания. Некоторые умельцы из них даже делают инфракрасные обогреватели.

И весьма успешно.

К сожалению, мощность всех филаментных ламп ограничена объемом колбы. Конечно, теоретически вы туда можете запихать 20-30 стержней, но светиться они у вас будут всего несколько секунд.

Малое пространство и небольшой объем газа в нем, просто не успеют оперативно отвести образовавшееся тепло и светодиоды моментально перегреются. Понадобятся колбы совершенно других форм и размеров.

Поэтому филаментные лампочки привычных габаритов А60 стараются не делать большой мощности. Экономия здесь не причем.

Все дело в технической составляющей и ограничениях по перегреву.

Реальные показатели будут раза в два меньше указанного на упаковке.

11 ваттные модели по люменам и уровню освещения не заменят вам полноценные 80-100 Вт, которые дают простые лампы накаливания.

Они будут соответствовать максимум 60 Вт. То же самое относится и к индексу цветопередачи CRI.

В лучшем случае он будет превышать показатель 80, но никак не CRI>90.

Вот таблица наиболее распространенных тип ламп, их максимальная мощность и световой поток, которые они способны выдать.

Данные получены известным специалистом в области световых технологий Алексеем Надёжиным, в результате независимых тестов и лабораторных замеров.

Каждый раз, когда вы видите в магазине лампочку, на упаковке которой будут написаны показатели превышающие эти измерения, знайте – вас дурят. Это чистый маркетинг и гонка производителей.

Напишешь на своем изделии 7Вт, а рядом будет стоять конкурент с надписью 9Вт, причем за те же деньги, то 9 из 10 купят именно его продукцию, а не твою. 99% потребителей попросту не имеют соответствующих приборов для измерений и проверки.

Им главное, чтобы изделие служило подольше.

Обращайте на это внимание.

Помимо малого нагрева филаменты обладают еще одним преимуществом – высокая светоотдача. Он доходит до 120 Лм/Вт.

При этом угол рассеивания лампочек достигает 360 градусов. В то время как в обычных светодиодных он не превышает 120-270 градусов.

Когда филаментная лампочка висит вниз колбой, у нее по центру появляется пятно, которое раза в два темнее, чем весь освещаемый периметр. Диаметр пятна достигает 50см на удалении в 1,5 метра от самой лампочки.

Форма пятна – это четырехлистник, который образуется от нитей светодиодов сходящихся наверху вместе.

Чем он шире, тем больше это пятно.

Кроме прямых нитей, выпускаются модели с дугообразной и спиральной формой.

Они дороже и их чаще всего используют в качестве декоративной подсветки под Новый Год.

Филаментные лампы идеально подходят для хрустальных светильников и люстр. В них как раз-таки важен нитевидный источник света, который при отражении будет играть на гранях хрусталя.

Матовые экономки в таких люстрах смотрятся нелепо. Свет получается “мертвый”, а висюльки не сияют.

Помимо преимуществ стоит упомянуть и о недостатках, а их не так уж и мало.

Во-первых, это цена. Она высокая из-за дорогих миниатюрных драйверов, которые по причине ограниченного пространства нужно как-то умудриться запихнуть в цоколь.

Из-за маленького драйвера возникают проблемы с фильтром. А отсюда повышенные пульсации света.

Вот к примеру сравните, старую добрую светодиодную лампу на технологии SMD и современную филаментную.

У старых один драйвер был такого же размера, как колба у филаментной.

Обязательно проверяйте пульсации при покупке. Иначе повесите такие лампы у себя в зале и спальне как основной источник света, а затем будете мучиться с глазами.

Если подходить к этому вопросу по всей строгости закона, то лампы с плохими показателями коэффициента пульсации, вообще не имеют права даже находиться на прилавках магазинов.

Существует постановление правительства России №1356 “Требования к осветительным приборам и осветительным лампам”. Оно запрещает продажу источников света с пульсацией более 10% и CRI

Заметьте, что у одних и тех же по размеру лампочек внутри может быть два разных драйвера. Один полноценный с коэффициентом пульсации 1% и менее, другой – на основе дешевых комплектующих.

Хороший драйвер при поднесении к нему радио будет фонить. А вот дешевый, не создаст никаких серьезных импульсных помех в эфире.

В некоторых моделях “свеча” с миниатюрным цоколем E14, драйвер помещают в специальную проставку между цоколем и колбой, так как воткнуть что-то качественное в бочонок диаметром 14мм вообще не реально.

Второй недостаток – стеклянная колба, которую легко можно разбить при небрежном отношении или транспортировке.

Третий – малая мощность. А еще не забываем:

Вся правда про филаментные LED лампы: разбираем и замеряем ваттметром и пульсометром

Очень много вопросов вокруг, странных (на первый взгляд), ламп. Я по работе часто сталкиваюсь с освещением и уже не первый раз сравниваю лампы.

На этот раз мои руки попала продукция под брендом Feron. И в данном случае это лампы так называемые «филамент» — которые становятся в последнее время всё более популярными. Я их уже какое-то время использовал, и вот решил поделиться с вами опытом использования.

Объясню что это такое, и для чего они нужны. А все детальные параметры и актуальные цены Вы найдете в интернет магазине АксиомПлюс, в котором я их и покупал.

Рассмотрим филаменты в четырех популярных колбах

Модель типоразмера A60 (на упаковке написано 60х107мм). Это стандартный размер для ламп в форме груши.

A60 чаще остальных продаётся c цоколем E27. У нас под прицелом лампа мощностью 7 Вт (аналог лампы накаливания в 60 Вт), и естественного белого свечения со световым потоком в 760 Люмен.

Компания Feron производит эти лампы в 3 цветовых исполнениях — это:

  1. тёплый белый
  2. нейтральный белый
  3. и дневной белый — холодный такой вот 6400к — приближенный к ксеноновому свету.

В данном случае это нейтрально белая лампочка с заявленной мощностью 7Вт и рабочим напряжением 230В.

Продавец в интернет магазине говорил, что нужно смотреть именно на то чтобы производитель указал 230В. Только они подходят по ГОСТам. Если указано 220В, то скачек напряжения в сети в плюс-минус 10% может привести к перегоранию.

Так что обязательно смотрите на напряжение питания. Для наглядности, если у Вас, как у меня, есть вот такой ваттметр с функцией замера напряжения, можете замерить свои лампочки. Замерив видим: наши 226,6В (даже плюс-минус 10%) — это в пределах нормы.

Угол рассеивания у них заявленный 270 градусов, но по факту я бы сказал что не

270 градусов, а как минимум 300 градусов.

Срок службы в 30.000 тоже можно считать не завышенным параметром, это реальный срок большинства LEDов.

Вообще что такое филамент?

Мы привыкли, что все современные светодиодные лампы, которые есть в продаже, устроены на SMD диодах. Первоначальные лампы на DIP диодах уже давно отжили своё, т.к. не эффективны — их уже трудно сыскать

Сейчас самые популярные в форме груши, свечи, шариков, таблетки gx53 — они все в основном идут на SMD диодах 2835, 5730, 5630 типа.

И даже есть уже лампы на COB диодах — это чипы с очень плотным монтажом для изготовления в основном миниатюрных ламп G4 и G9. А также MR16 и другие лампы направленного света. Груши на COB технологии изготавливать смысла большого нет, так как COB светодиоды имеют очень малый угол рассеивания — всего 120 градусов.

Поэтому на основе таких светодиодов делают источники света (лампы, светильники) именно направленного света, такие как прожекторы.

А если нужен рассеянный свет, то выходят из положения применением SMD диодов, размещая их на матрице в одной плоскости, которую прикрепляют к радиатору для теплоотвода. А свет рассеивается за счет матовой колбы.

Но так или иначе, в любом случае, угол рассеивания гораздо хуже чем у филаментных — где-то 180 градусов, а то и меньше.

Преимущество такой технологии в том что, она позволяет хорошо отводить тепло.

Особенно если в конструкции применён хороший радиатор.

Еще некоторые производители пытаются выйти из положения за счёт увеличения сферы матового рассеивателя (пластиковой колбы), дабы увеличить сам угол рассеивания.

Вот как раз в таких LED лампах угол приближен к 270 градусам.

Но, в любом случае, за счёт матового рассеивателя КПД лампы снижается, т.к. часть света теряется вот в этом самом рассеивателе. Чтобы уйти от этой «потери света» изобрели вот такие вот филаменты.

В них применяются нитевидные светодиодные матрицы. Это не один светодиод, а типа COB технология, только здесь она называется COG (Chip on Glass).

В COG на стеклянное основание нарощены светодиоды и покрыты люминофором ( которое как раз таки и светится тем или иным цветом свечения).

Для того чтобы отводить тепло этих нитевидных светодиодов, внутрь закачан (по сути должен быть закачан по технологии) газ, на основе гелия. Вот он обладает хорошей теплопроводностью и текучестью. Он там внутри за счет конвекции он отводит тепло от светодиодов к стеклянной колбе, а та уже отдает в окружающую среду.

Так вот мощность филаментных ламп ограничена ёмкостью вот этой колбы, и сколько туда газа можно закачать.

Поэтому невозможно поставить там 20-30 таких светодиодных нитей. Да, теоретически они будут светить, но не долго, т.к. быстро перегреются и выйдут из строя.

Поэтому как и классические LED лампы, филаментные ограничены в мощности. В маленькой лампочке нельзя реализовать 20Вт, а обычно 5-7Вт.

Максимум, что мне встречалось это 18Вт в А60 колбе у LEDeX, и то с применением хорошего радиатора. Так что в принципе для долгосрочной службы лампы реализовать больше мощности уже не получится.

Так и в филаментных мощность лампы ограничена размерами, а точнее емкостью колбы.

Читайте также:  Практичное использование пространства: баня в подвале частного дома своими руками

На пример, Feron заявляют, что реализовали на этой лампе 7Вт.

Но насколько я уже сталкивался с этими лампами, в среднем мощность одной нити составляет порядка 1Вт.

Соответственно если нитей четыре, то получается 4 Вт. Но у каждого производителя разные комплектующие и возможно в одной нити может быть конечно и больше 1Вт. Но это очень просто замерять.

Здесь вот чудес нет, и она не 7 Вт. Как я и подозревал, 3-4 Вта — вот такая фактическая мощность. Как видите, достаточно легко с этими лампами прикинуть мощность: просто смотрите, сколько у неё нитей. И помните: одна нить потребляет порядка 1Вт.

К тому же коэффициент пульсации порядка 25%, а это, в любом случае, больше чем санитарные нормы. Поэтому для бытового использования в домашних условиях я бы такой лампу наверное не применял.

Из плюсов: лампа не греется, и буквально чуть тепленькая. Хотя на 4Вт… конечно, чего бы она нагревалась. И обычная LED лампа в 4Вт греться почти не будет. Но КПД у филаментной лампы выше.

Сейчас они пока конечно дороже чем обычные на традиционных SMD диодах.

Особенно разница ощущается в ряду с удешевленными лампами на так называемых, композитных радиаторах. Там радиатор где-то есть, а где-то нет. Так для чего имеет смысл покупать такие вот филамент-лампочки?

Лампы с таким нитевидным светодиодом отлично подходят именно для хрустальных светильников и люстр.

Потому что для хрустальных светильников важен, вот этот эффект, чтобы свет играл на грани хрусталя. А с матовым источником хрустальные люстры переливаться не будут.

Ну и потом так как КПД такой лампы лучше, она и свет рассеивает лучше. И там, где Вам нужен именно хороший угол рассеивания, вот такие филаменты подойдут лучше всего.

Где можно купить

Цены на скриншоте с официального сайта представителя Feron — интернет-магазин АксиомПлюс. Актуальные на сегодня цены, в принципе, можете сами зайти и посмотреть у них..

Ну всё это и понятно дело изготавливается в Китае. И аналоги на АлиЭкспресс, правда, гораздо дешевле получается, но покупки в Китае имеют свои особенности. Не будем о них. Думаю вы и так всё знаете.

Второй пример — лампа в колбе G45

Давайте посмотрим еще один пример лампы — поменьше — в форме шарика, так называемый G45 с соответствующим диаметром колбы 45мм.

Здесь они уже заявляют что это 5Вт. Цоколь у них есть как е27 так и е14 (маленький). Здесь четыре нити, значит можно предположить что здесь всё-таки всё в порядке и 4Вт. Цвет свечения тоже естественный — нейтральный белый 4200 Кельвин.

Замерив на ваттметре, видно, что здесь тоже порядка 4Вт, точнее 3,8 Вт. По пульсации чуть меньше, и около 9 с лишним процентов. Но 10% это тоже много. Должно быть меньше чем 5%.

Как видите тут, в отличии от матовой колбы, всё прозрачное и похоже именно на лампу накаливания. Драйвер похоже спрятан в самом цоколе, и я ниже потом покажу в разобранном виде одну из ламп и Вы посмотрите как оно всё реализовано.

В этом небольшом объеме достаточно тяжело вместить хороший драйвер с хорошим фильтром. Дабы он сглаживал эти пульсации. Здесь драйвер сделан по минимуму лишь бы светил, включался и всё.

Третья лампа в форме свечи — С37

Следующая на суд идет свеча с цоколем е14 и мощностью 5Вт. Здесь как и в шарике такое же количество нитей, но она изготовлена в форме свечи.

Для свечи основным габаритным параметром является диаметр, потому что зачастую они должны полностью вместиться в конструкцию люстры или светильника. И по стандарту диаметр этот не должен превышать 37мм. Здесь даже чуть меньше — они сделали её 35х110 мм.

На свече уже есть дополнительная юбка, которая скрывает собой драйвер уже посерьезнее. Но с одной стороны эта юбка закрывает угол рассеивания и снижает его. Уже нет тех 300 градусов, как у первой, а чуть меньше.

Но с другой стороны это позволяет установить лампу в люстру со «стаканами», в которую не каждая лампа в форме свечи влезет из-за ширины. Она туда идеального встает и нормально фиксируется.

Размеры мы рассматривать детально не будем, т.к. для нас важно сейчас соответствие мощности и пульсации.

И тут с мощностью тоже самое как и с шариком было: 3,6Вт вместо 5 Вт заявленных. А вот коэффициент пульсации, видимо за счет большего драйвера в «серебристом стаканчике», как раз-таки в норме — 0,5-2,0%.

Вот такие лампы — хорошие, практически без пульсации. Потому что в цоколь е14 хороший драйвер точно не поместится. А в этот «стаканчик» производитель смог дополнительно уместить фильтр для сглаживания пульсаций. Так что вот такая вот лампа LB55 — очень даже неплохая.

На примере у нас LB55 с температурой 4000 Кельвин, но также как и остальные доступны: тёплый, нейтральный белый и дневной белый в трёх вариантах цветового исполнения. Так что можно подобрать себе цвет на вкус, что больше любите потеплей или похолодней.

И четвертая лампочка — свеча на ветру

Тот же Feron, но правда уже теперь тёплая и она идёт под названием как «свеча на ветру».

Многие думают что это мерцающая свеча со светом как у настоящей свечи на ветру. Но нет, это просто колба дополненная хвостиком, которая светит точно также ровным светом как и обычная.

По размерам она обычно чуть-чуть длиннее. Замерять не будем, и на коробке видно, что размеры в 110мм и 142мм соответсвтенно (за счет хвостика). А диаметр такой же.

Драйвер тут внутри тоже получше и светит лампа один в один, как накаливания. Мощность те же самые 3,8Вт, коэффициент пульсации в пределах нормы — 1%.

Напомню, что всё что до 5% — неплохо, и очень даже хорошо.

Так что лампы вроде бы одного и того же производителя, а такие разные (я имею в виду по пульсации и по мощностным показателям). Так некоторые были с явно завышенными заявленными показателями в 7Вт, где реально было 4Вт. Так что ориентируйтесь на количество нитей. Одна нить — 1Вт, примерно.

Что внутри светодиодной лампы?

Возьмем старую лампу, одну из перегоревших. У неё была заявлена мощность именно 10Вт и она скорее всего в этой колбе перегрелась и перегорела.

У многих маркетологов сейчас началась тенденция «больше и больше заявленной мощности». Начинают пихать в маленькую колбу всё больше и больше нитей.

Сначала появились восьми-нитевые на 4-8 Вт, это еще было нормально. А сейчас они выбрасывают на рынок лампы такого же размера, но с в 10Вт на борту. В них «стопудово» либо меньше мощности, либо она точно также быстро перегорит.

Даже 8Вт для филаментной лампы в форме А60 — это уже предел. Она начинает перегреваться и достаточно быстро может выйти из строя, особенно если она у вас в закрытом светильнике. Или более того в каком нибудь герметичном светильнике, где нет охлаждения. А она такая же светодиодная, и тоже требовательна к охлаждению.

Так и с моей старой лампой случилось, которая думаю, всё-таки выдавала порядка около 9Вт, что и привело к тому что она перегрелась.

Еще один способ проверить лампочку — разбить. Если там есть газ (а он должен быть), то должен быть и характерный хлопок, как у лампы накаливания. В них, правда, был вакуум или там газ какой-то инертный на основе гелия. В крайнем случае, если хлопка вы не услышите, то должен присутствовать специфический запах. Но в целом этот момент остаётся на совести производителя, так как не станете же вы бить лампочки прямо в магазине.

В принципе видно всё что расположено внутри, конденсаторы и импульсный трансформатор которые во всех лампах занимаются сглаживанием пульсаций. Если этих деталей там нет, то пульсация в лампе соответственно будет бешенная.

В общем, такие лампы нуждаются в грамотном подходе к выбору и к покупке.Не стоит бездумно покупать какие-то новомодные лампочки. Они есть разного качества от разных производителей. Они также выходят из строя, могут перегореть, и в них тоже может присутствовать пульсация.

И не верьте рассказам, о том что LED лампы не перегорают, не пульсируют как люминесцентные и вообще это панацея.

Отличия современных и старых ламп

Первые модели были достаточно дорогими, потому нитевидные светодиоды выращивались не на стеклянной подложке, а на сапфировой. И самые первые модели были как эксклюзивное решение и достаточно дорогими. Сейчас и количество производителей увеличилось, конкуренция на рынке усиливается, и соответственно, технология с выращиванием на стеклянной подложке уже отработана, так что удешевление филаментов продолжается.

Подготовлено с использованием материалов интернет магазина светотехники АксиомПлюс

«Тёмная энергия» филаментных светодиодных ламп

Привычные светодиодные лампы, которые сейчас уже есть у каждого, построены на SMD светодиодах и имеют один общий недостаток. Диоды размещаются на матрице в одной плоскости и чтобы получить более-менее рассеянный свет приходится использовать матовые рассеиватели и КПД лампы снижается. Часть света теряется в этом самом рассеивателе.

И тут мы узнаём про филаментные светодиодные лампы, которые при беглом взгляде не отличить от старых добрых «лампочек Ильича». Специально прикупил в Леруа Мерлен такую необычную лампочку с цоколем E14 чтобы рассказать о них подробнее. Вскроем и посмотрим что у неё внутри. Полагаю не только мне интересно узнать, как в такой маленький цоколь умудрились затолкать драйвер для светодиодов.

Что такое филамент?

Термин «filament», при дословном переводе означает «нить накаливания». Конечно, никакой нити накаливания тут и близко нет, а применяются диэлектрические полоски из стекла или сапфира с нанесенными на них светодиодами, покрытыми толстым слоем люминофора. Свечение филаментов максимально приближено к свечению нити накаливания.

Каждый филамент содержит около 28 мелких светодиодов, их свечение можно разглядеть на следующей фотографии (я намеренно повредил нить одного филамента в лампе, чтобы их можно было увидеть).

Как видите, филаментная лампа может работать и без стеклянной колбы. Средняя мощность одной «нити» составляет примерно 1 Вт и чтобы заставить филамент засветиться, следует подать на него напряжение порядка 60-70 вольт (поэтому «низковольток» с филаментами вы не найдёте).

Все филаменты внутри лампы соединены последовательно. Соответственно, если нитей четыре, то получается 4 Вт, а шесть будет соответствовать 6-ваттной лампочке. Впрочем, я не утверждаю, что мощность нити может быть и чуть выше 1 Вт, но не принципиально. Так что, не ведитесь на обещания на коробке, а посчитайте количество нитей в лампочке.

Особенности конструкции филаментных ламп

Если с обычными светодиодными лампами всё более-менее понятно, то в конструкции филаментных не обошлось без оригинальных решений.

Как известно, светодиоды нельзя запитать от переменного напряжения и требуется использовать специальный драйвер. У стандартных светодиодных лампочек имеется большой корпус, куда и прячется плата с драйвером. Филаментным лампам для размещения драйвера приходится ограничиваться пределами маленького цоколя E27 или совсем крохотного E14. Как вообще возможно, в столь ограниченном пространстве, разместить полноценный драйвер?

В цоколь E14 хороший драйвер точно не поместится, но инженеры всё равно стараются снизить пульсации. Примерно по такой схеме построен драйвер филаментной лампы GAUSS из Леруа Мерлен:

Как видно из фотографий внутри лампы нет никаких радиаторов. Проблема с отводом тепла от светодиодов к стенкам колбы лампы решается с помощью инертного газа внутри лампы. Так как используется много маломощных светодиодиодов, то и тепла они выделяют не сильно много, в районе 60-70°C. Выделяемое тепло рассеивается в атмосферу через тонкое стекло колбы.

Я уже упомянул, что все светодиоды в лампе соединены последовательно, поэтому с выходом из строя одного из них, умирает и вся лампа. Потому мне не верится в заявленный на коробке срок службы лампы до 25 лет. Тем более что гарантию производитель даёт всего на 2 года.

Но в целом, филаментные лампы мне понравились больше обычных светодиодных. Прозрачная колба обеспечивает лучшую цветопередачу и рассеивание света у них, как у лампочек Ильича. Только лучше брать со стандартным цоколем E27, так как в нём проще разместить хороший драйвер со сглаживанием пульсаций. Ну и минус в том, что такие лампы невозможно починить.

P.S. Чуть не забыл рассказать почему же в заголовке я написал про «тёмную энергию» филаментных ламп. а дело в том, что на плате драйвера одной такой лампочки (к сожалению она не сохранилась) было написано DARK ENERGY 😉

Если считаете статью полезной,
не ленитесь ставить лайки и делиться с друзьями.

Комментариев: 7

  1. 2019-11-27 в 08:12:28 | Ринат Хаметов

Начала одна лампа мигать и из 4 нитей осталась светить одна. Причем в Москве, где напряжение стабильно.

На даче еще хуже. При падении напряжения, резко падает светимость, обычные светодиодки ЭРА светят без проблем в этот же момент

Ринат, тебе же сказали, сравнивай заявленную мощность и количество филаментов и если мощность указана больше, то ток через светодиоды явно завышен, соответственно перегрев и выход из строя, ну и материал основы существенен.

Судя по схеме там работает стабилизатор тока на 10 мА. При напряжении на диодах 70 В, будет по 0,7 Вт мощности на один филамент. 4 филамента последовательно – это 280 вольт. В сети после выпрямителя будет 300 В. Для стабилизатора остается 20 вольт. Для надежной стабилизации тока маловато. Ибо нестабильность напряжения в сети в минус 20 вольт (что вполне реально) может не хватить для стабилизации. Рассеиваются на регулирующем транзисторе 0,2 Вт. Вроде не много, но стоит напряжению в сети подскочить вольт на 20, и мощность увеличится раза в два. При малых габаритах, транзистор будет все время перегреваться. Так что высокая надежность вряд ли тут будет. Проще было бы соединить филаменты параллельно и поставить конденсатор в линию переменного тока. Он бы и ток стабилизировал, и мощность бы не рассеивал. Так Китайцы делают. И правильно делают.

Читайте также:  Как пришить шторную ленту: технологии применения узкой и широкой лент

Не. Свет слишком желтый, разве что для экзотики вкрутить такую лампочку в дореволюционный латунный патрон..

Картинка с конструкцией филамента не соответствует реальности. Нету там красных светодиодов. Только синие.

Максимальная мощность одного длинного филамента сейчас 2.6 Вт, но это только в лампочках E27. В E14 максимум 1.53 Вт.

У меня дача освещается от солнечной батареи напрямую от 12В автомобильного аккумулятора. Год назад купил на Алиэкспресс такие дешёвые филаментные лампы, которые питаются напрямую постоянным током, в них даже колбы поликарбонатные с дырочками, никакого инертного газа. Думаю, там другая схема питания, либо повышающий DC-DC преобразователь.

работать без колбы могут, но не долго. Колба заполнена теплопроводящей газовой средой, и корпус лампы (стекло) является радиатором. В целом, если нормальный производитель, который поставил хороший драйвер, лампы такие служат дольше. И гарантию на них дают не 1-2 года. Например у меня висят не самые дешёвые, гарантия 5 лет. Пока работают 3 года, примерно по 6 часов в день, живы все 3.

Petrovich35 › Блог › Как нашего брата дурят маркетологи, часть 2. Светодиодные лампы

Добрый день, друзья!

Несколько лет назад я опубликовал статью Как нашего брата дурят маркетологи. Речь тогда шла о том, как в магазинах нам продают автохимию, разлитую из одной бочки, но расфасованную в разную упаковку, и, конечно, выставленную на продажу по разной цене.

Но там вопрос был только в деньгах, а сегодня хочу поделиться с вами одним своим весьма неприятным наблюдением, на какие еще уловки идут маркетологи, чтобы любыми способами впарить нам свой товар, пусть даже не безопасный для здоровья.

У меня подросла дочь, у нее уже своя молодая семья, ребенок. Естественно, она хочет, чтобы со здоровьем малыша все было хорошо, в том числе и со зрением. Как врач по образованию, она понимает, что на зрение большое влияние оказывает качество освещения.

Получилось почти как в известном стихотворении, “крошка дочь к отцу пришла, и спросила кроха: какие лампы хорошо, а какие плохо?”.

Чтобы не сильно углубляться в теорию, скажу лишь, что на зрение, утомляемость и даже гормональный фон человека заметное влияние оказывают пульсации источника света. Естественное солнечное освещение имеет практически нулевые пульсации, а вот искусственное освещение далеко не всегда такое же идеальное.

Величина пульсаций источника света характеризуется коэффициентом пульсаций.
Рассчитывается коэффициент пульсаций по формуле, приведенной на рис.2. Физический смысл его очень простой, данный коэффициент показывает, насколько сильно освещенность от данного источника света (например, лампы) отклоняется от среднего значения. Чем это отклонение меньше, тем качественнее источник света.

Разные типы источников света имеют разный коэффициент пульсации.
В Интернете очень много информации на эту тему. Кто захочет, без труда найдет данные для разных типов и даже моделей ламп. Я же приведу усредненные, среднестатистические цифры:

1. Лампы накаливания: коэффициент пульсаций 10-15%
2. Бытовые люминесцентные лампы (т.н. энергосберегающие “спиральки”): 8-20%
3. Светодиодные лампы с импульсным блоком питания: 30%

Как видим, далеко не все лампы одинаково полезны…

Государство нормирует допустимые пределы коэффициента пульсаций для разного назначения освещения. Все понимают, что для освещения, например, подъезда и жилой комнаты, требования к освещению совершенно разные. Если покопаться в СНИПах, то можно найти информацию, что для ответственной работы, требующей концентрации внимания (например, работа за компьютером), коэффициент пульсаций не должен превышать 5%, для общего освещения жилых помещений — не более 10%, и т.д.

Т.е. для сохранения зрения и работоспособности, особенно если это касается детей, лучше выбирать лампы с коэффициентом пульсаций не более 5%.

При этом надо учитывать и частоту пульсаций. Если пульсации видны невооруженным глазом, например, лампа мигает или мерцает, то такие видимые пульсации явно негативно влияют на наше здоровье и самочувствие. Но не менее опасны и более высокочастотные пульсации, которых мы не видим.

Вредными считаются пульсации на частотах до 300 Гц. Мы их не видим, но мозг и глаза на них реагируют. Считается, что пульсации выше 300 Гц уже не воспринимаются мозгом и не оказывают влияния на здоровье (рис. 3).

Но вернемся от теории к практике.

Так как я уже был немного в этой теме, то на основании своего прошлого опыта дал дочери простой и универсальный совет — если не хочешь сильно заморачиваться, покупай лампы известных мировых брендов — PHILIPS, OSRAM и т.д. Они дорожат своей репутацией и не будут продавать откровенный шлак. В качестве примера я привел лампы OSRAM, купленные мной несколько лет назад (фото 4):

Как указано на упаковке, лампы без пульсаций. Строго говоря, для измерения коэффициента пульсаций нужен специальный прибор (люксметр-пульсметр), но косвенно оценить наличие или отсутствие пульсаций можно с помощью камеры мобильного телефона. Если поднести камеру очень близко к лампе, то при наличии пульсаций, на экране будут видны характерные полосы. Как показано на фото 5, данные лампы OSRAM пульсаций не имеют:

А теперь переходим к самому неприятному.

Отправившись в крупный сетевой гипермаркет, я приобрел на пробу (природная осторожность) одну новую лампу OSRAM, в похожей упаковке, на которой было написано “без мерцания” и “безопасно для глаз” (фото 6). Известный проверенный производитель, поэтому никакого подвоха не ожидалось.

Прямо в магазине проверил лампу на наличие пульсаций с помощью телефона и магазинного проверочного стенда. Пульсаций не обнаружил, отлично. Каково же было мое удивление, когда уже дома, при повторной проверке, я обнаружил сильные пульсации света этой лампы (фото 7)!

Лампу я сдал обратно в магазин под предлогом, что не подошла по размерам. Но не это главное. А главное то, что в погоне за прибылью, нас цинично обманывают даже именитые производители.

В чем же дело? А дело в том, что далеко не каждый покупатель улавливает разницу между “пульсациями” и “мерцанием”. А разница есть, и весьма существенная. Отсутствие мерцания указывает лишь на то, что лампа светит без видимых колебаний светового потока, не мигает и не мерцает. Но невидимые, вредные для здоровья пульсации, при этом могут присутствовать в полной мере. То есть, маркетологи OSRAM цинично подменяют эти два понятия, по сути, обманывая потребителя. Да, формально не придерешься, на упаковке речь идет о “мерцании”, а не о “пульсациях”. Но по сути это обман, тем более, что имеется надпись “безопасно для глаз”. Лампы с пульсациями, как правило, дешевле в производстве, поэтому, в погоне за прибылью, производители идут на подобный обман.

При этом, данному обману помогают и торговые сети. Мое первое предположение было, что в проверочном стенде лампы питаются постоянным током, поэтому при проверке пульсации и не видны даже у самых некачественных ламп. А дома в наших розетках стандартный переменный ток напряжением 220 В частотой 50 Гц, поэтому пульсации некачественных ламп проявляются во всей своей “красе”. Хотя, в стенде все может быть устроено хитрее, так как блоки питания ламп бывают разные и не все будут работать от постоянного тока. Например, лампа с импульсным блоком питания будет работать и от постоянного тока, у нее на входе диодный мост, переменное напряжение так и так выпрямляется. А вот лампы с блоком питания с гасящим конденсатором на входе, в таком случае не должны работать, они только от переменного тока работают. Так что вопрос устройства стенда остается открытым.

К сожалению, коэффициент пульсаций, как правило, не указывается на упаковке ламп (лично я не встречал). Лишь изредка можно встретить пометку “без пульсаций” (фото 9). Причем, отсутствие этой пометки не говорит о том, что лампа плохая, просто производитель не посчитал нужным указать эту информацию.

Как же быть в этой ситуации? Сразу скажу, когда против тебя включен мощный механизм оболванивая, помогает только метод проб и ошибок:

1. Никогда не доверяйте слепо тому, что написано на упаковке. Даже бренды с репутацией, как выясняется, могут обманывать своих потребителей.
2. Если предполагаете приобретать крупную партию товара (например, несколько ламп), сначала приобретите один экземпляр, для изучения и тестирования.
3. Торговая сеть не гарантирует вам объективной проверки, так как ее интересы совпадают с интересами производителя — впарить вам побольше своего товара и заработать на этом. Поэтому перепроверяйте товар дома.

Вот неплохое видео, как выбирать светодиодные лампы:

Обязательно замените дома лампы с пульсацией, они постепенно и незаметно убивают наши глаза!

На этом пока все, берегите свое здоровье, до связи!

Филаментная LED лампа
Устройство, схема, пример ремонта

Светодиодная филаментная лампа – это искусственный источник света, в котором световая энергия вырабатывается нитевидным элементом, называемым филаментом (filament), состоящим из множества включенных последовательно светодиодных кристаллов.

Филаментная лампа была разработана японской компанией «Ushio» в 2008 году, но из-за малой мощности для освещения была непригодна. И только в 2013 году китайским компаниям удалось добиться величины излучения светового потока филаментной лампы, сравнимого с лампой накаливания мощностью 60 Вт. Внешний вид филаментной лампочки показан на фотографии.

Филаменты

Источником излучения светового потока в филаментной лампе являются филаменты, откуда и произошло название лампы.

На фотографии показано шесть филаментов, извлеченных из перегоревшей лампы. Филаменты могут иметь любую форму, даже спирали. Это позволяет дизайнерам создавать эксклюзивные лампочки.

Устройство светодиодного филамента

Филаменты изготавливают по технологии Chip-On-Glass, сокращенно COG, что переводится как чип на доске.

Основанием филамента служит стеклянный или сапфировый стержень круглой формы с вплавленными в него по торцам электродами. Диаметр стандартного стержня составляет 2 мм, длина – 30 мм.

Вдоль стержня закреплено последовательно соединенных 28 светодиодных миниатюрных кристаллов синего и красного цветов излучения. Сверху светодиоды покрыты слоем лака, пропускающим только белый свет.

Мощность филамента составляет около 1 Вт, напряжение, необходимо для свечения составляет около 60 В. Рабочий ток, соответственно, около 16 мА.

Филаменты в лампочках размещают в герметичную стеклянную колбу, но они успешно могут работать и на открытом воздухе, что позволяет из них делать оригинальные самодельные светильники.

Устройство филаментной лампочки

Если посмотреть на филаментную лампочку издалека, то можно и не отличить ее от лампы накаливания. Такая же стеклянная колба и внутреннее устройство. Только спирали толще и расположены вертикально.

Но это только внешнее сходство, так как работает филаментная лампа по принципу светодиодной лампочки.

Для подачи питающего напряжения в лампе имеется металлический цоколь с резьбой Эдисона. В настоящее время лампы оснащают цоколями только типоразмеров Е14 и Е27. В цоколе размещен драйвер, который обеспечивает преобразование переменного напряжения сети в постоянное напряжение, стабилизированное по току.

С драйвера питающее напряжение подается через два проводника, вплавленных в герметичную стеклянную колбу, на выводы размещенных в ней филаментов. Филаменты между собой и токовводами соединяются с помощью точечной сварки. Для эффективного отведения тепловой энергии от филаментов колба заполнена гелиевой газовой смесью, которая обладает высокой теплопроводностью.

Анализ причины перегорания филаментной лампы

Чтобы не отставать от технического прогресса при появлении на рынке филаментных ламп приобрел двенадцать таких лампочек с цоколем Е14 мощностью 6 Вт для двух люстр.

Лампы красиво смотрелись в люстре и хорошо освещали помещение, но через год эксплуатации одна из них ярко вспыхнула и перестала светить. Решил выяснить, в чем причина отказа.

Попытка отделить цоколь от колбы лампы не увенчалась успехом. Клей-компаунд скрепил цоколь с колбой намертво. Пришлось применить разрушающий метод разборки с помощью тисков.

Для извлечения драйвера из цоколя пришлось, вращая его сжимать по немного тоже в тисках. Компаунд и остатки стекла колбы при этом крошились.

В результате удалось извлечь из лампы филаменты и драйвер без их повреждения. На фотографии показано как выглядит филаментная лампа без колбы и цоколя.

При осмотре драйвера сразу бросилось в глаза, что рядом с токоограничивающим конденсатором резистор был покрыт слоем копоти, что свидетельствовало о сгорании одной из деталей. Проверка резистора показала его исправность. Следовательно, вышел из строя конденсатор.

На противоположной стороне печатной платы драйвера был распаян только мостовой выпрямитель и нанесена маркировка для подключения. Прозвонка диодов мультиметром показала, что все диоды исправны.

Электрическая схема филаментной лампы

Для дальнейшего анализа причины отказа с печатной платы драйвера срисовал электрическую принципиальную схему филаментной лампы. Как видно из схемы, она практически не отличается от стандартной схемы светодиодной лампы, собранной на обыкновенных светодиодах с токоограничивающим конденсатором.

Ток стабилизируется с помощью конденсатора С1, выпрямляется диодным мостом VD1-VD4 и далее поступает на филаменты HL1-HL6, соединенные последовательно двумя параллельными группами по три. Резисторы служат для разряда конденсаторов после выключения лампы. С2 сглаживает пульсации.

Достоинством этой схемы драйвера является простота, позволяющая поместить его даже в цоколь Е14, высокий КПД и практически отсутствие выделения тепла. Недостатком является большой коэффициент пульсаций светового потока, что исключает использование ламп с таким драйвером для освещения рабочих мест с напряженным трудом.

Если необходима филаментная лампа с малым коэффициентом пульсаций, то нужно приобретать с драйвером на микросхеме. На фото классическая схема такого драйвера, но он больше по размерам, поэтому устанавливается только в филаментные лампы с цоколь Е27.

Проверка филаментов лампы

Для проверки филаментов необходимо на их выводы подать напряжение постоянного тока не менее 60 В. Поэтому мультиметром, который выдает в режиме измерения сопротивления напряжение не более 9 В прозвонить филамент невозможно.

Поэтому для проверки филаментов был использован драйвер, извлеченный из лампы. Конденсатор С1 был в обрыве, поэтому был выпаян и вместо него запаян исправный навесной такой же емкости.

При подаче напряжения на драйвер, засветился только один из шести филаментов, и то участками, что указывало на возможную неисправность всех филаментов лампы.

Для проверки филаментов они были разъединены и проверены по отдельности. Подключались к родному драйверу, последовательно с которым по цепи подачи питающего напряжения был запаян дополнительных конденсатор такой же емкости.

Как и ожидалось, все филаменты оказались неисправными. Один из них засветился, как и ранее, участками, что не позволяло его дальнейшее использование.

Читайте также:  Как и из чего сшить кресло грушу (мешок) своими руками

Причина перегорания филаментной лампы

Филаментная лампа перегорела из-за электрического пробоя токоограничивающего конденсатора С1. В результате все напряжение питающей сети (220 В) было приложено к выводам светодиодных филаментов и через них потек ток, превышающий допустимый.

Светодиоды от перегрева перегорели, как и сам конденсатор. От него и покрылась копотью печатная плата.

Ремонт филаментной лампы

Схемы драйверов у филаментных ламп такие же, как и обыкновенных светодиодных и ремонт их отличается только способом разборки. Приведу пример из личной практики ремонта филаментной лампы.

Через некоторое время перегорела еще одна лампа в люстре из этой же партии. С учетом полученного опыта решил применить неразрушающий способ ее разборки, так как внешний осмотр не выявил перегорания филаментов.

Для этого была использована мини дрель с установленным в нее наждачным диском, как у болгарки. Такая мини дрель в комплекте имеет большой набор инструментов, позволяющий выполнять практически любые ювелирные работы, начиная от сверления и заканчивая гравировкой на металле и стекле.

Цоколь филаментной лампы был зажат за резьбовую часть в тисках и прорезан абразивным диском по всей длине его окружности, как показано на фотографии.

Далее при одновременном разогреве центрального контакта цоколя паяльником резьбовая его часть была отсоединена. В результате получен доступ к печатной плате драйвера. Драйвер был обвернут изоляционной прозрачной пленкой.

Изоляция была удалена и диоды выпрямительного моста проверены с помощью мультиметра. Они оказались в обрыве. Мост был заменен диодным мостом, взятым из драйвера разбитой описанной выше лампы.

Для исключения перегорания филаментов последовательно с установленным в драйвере конденсатором был впаян навесной емкостью 0,5 мкФ и на схему подано напряжение.

Филаменты засветились, правда с меньшей яркостью, так как при последовательном соединении конденсаторов суммарная их емкость всегда становится меньше, чем емкость конденсатора в цепочке с меньшей емкостью. Слабое свечение филаментов свидетельствовало о исправности конденсатора на плате. При подаче питающего напряжения на выводы лампы она засветила на полную яркость.

Для восстановления целостности цоколя отпаянный вывод драйвера был заведен в предварительно освобожденный от припоя центральный контакт и половинки цоколя соединены в четырех местах с помощью пайки. Для надежности были использованы отрезки выводов от советского транзистора.

Осталось только вкрутить отремонтированную своими руками филаментную лампу в патрон люстры для проверки. Как видите все лампочки светят одинаково ярко.

Достоинства и недостатки филаментных ламп

Достоинства филаментных ламп:

  • Большой срок службы;
  • Большой угол рассеивания светового потока, как у ламп накаливания;
  • Красивый внешний вид, что позволяет использовать их в любых видах светильников;
  • Полная взаимозаменяемость с лампами накаливания, что позволяет устанавливать филаментные лампы в любые старые люстры и светильники;
  • Возможность дистанционного изменения яркости свечения (диммирование);
  • Безопасная температура нагрева стеклянной колбы, что исключает возможность получения ожога при случайном прикосновении;
  • Утилизируются как бытовые отходы.

Недостатки филаментных ламп:

  • Цена больше, чем у обыкновенных светодиодных;
  • Выпускаются только для сети напряжением 220 вольт;
  • Доступно только два вида цоколя – E27 и E14;
  • Мощность не превышает 6 Вт (эквивалент лампочки накаливания 60 Вт);
  • В случае перегорания филаментов не подлежат ремонту;
  • Требуют бережного отношения из-за стеклянной колбы.

Заключение

Как видите, недостатки филаментных ламп, кроме цены, на практике мало ограничивают возможность их применения в бытовых условиях.

Хотя максимальная мощность лампы в настоящее время небольшая, но четырех или пятирожковая люстра с лампочками мощностью 6 ватт вполне обеспечит достаточное освещение помещения площадью до 20 м 2 . А если понадобиться осветить комнату большей площади, то можно повесить две люстры.

Филаментная лампа являются образцом последних достижений светотехники и в ближайшее время вытеснит все остальные источники искусственного освещения в помещениях.

Тайны филаментных светодиодных ламп

В ноябре 2013 года, прогуливаясь по выставке «Интерсвет», я увидел несколько стендов из Поднебесной с. вполне обычными, на первый взгляд, лампами накаливания. Непроизвольно возник вопрос: что же побудило китайских производителей представить технологию более чем вековой давности? Только при внимательном рассмотрении обнаружилось, что они, на самом деле, светодиодные. Уже на следующий год эти необычные лампы стали продаваться в российских магазинах. Новинка не была никак проанонсирована, производители сохраняли интригу, не сообщая принцип работы, что побудило множество слухов в профессиональной среде. Такой подход не только привлек интерес потребителей, но и, напротив, отпугнул многих из них. Оставалось непонятно, можно ли на практике применять необычные лампы. В этой статье будет сорван покров тайны с загадочного изобретения.

Во многих моделях светильников нить накала лампы является важным элементом дизайна. Поэтому заменить лампу накаливания в них до недавнего времени было нечем. Создать компактную люминесцентную лампу (КЛЛ), которая по форме светящегося тела точно соответствовала бы лампе накаливания, физически невозможно. Светодиоды являются миниатюрными источниками света, что открыло перспективы решения данной проблемы. Например, были созданы лампы, в которых светодиоды располагались на узкой линейке внутри колбы, линейка, в свою очередь, соединялась с теплоотводом вне колбы. Недостатками такой конструкции были ограничение по мощности (светодиодная лампа по световому потоку эквивалентна лампе накаливания мощностью не более 25 Вт), а также высокая стоимость. К тому же полного соответствия дизайна лампе накаливания достичь так и не удалось.

В 2008 году японской компанией Ushio были созданы первые светодиодные лампы, внешне неотличимые от ламп накаливания. Новинка получила название Filament LED Bulb от английского слова Filament, в переводе означающее «нить накаливания». В русском языке сначала появился термин «светодиодные лампы накаливания», однако, он не прижился, так как объединял в себе противоречащие друг другу понятия. На момент написания статьи уже устоялся термин «филаментные светодиодные лампы» (ФСЛ).

Первоначально ФСЛ выпускались только для декоративных целей, их световой поток был недостаточен для общего освещения. Поэтому за пределами Японии они не получили известности. Прорыв произошел в 2013 году, когда несколько китайских компаний одновременно представили мощные ФСЛ для общего освещения, эквивалентные по световому потоку лампам накаливания мощностью до 60 Вт.

Следует отметить, что, хотя создание ФСЛ и диктовалось в первую очередь эстетическими соображениями, разработка их конструкции не сводилась только к размещению светодиоды таким образом, чтобы они имитировали нить накаливания. Пришлось глубоко переосмыслить множество вопросов, связанных с конструкцией светодиодных источников света, в результате чего получилась принципиально новая разновидность ламп.

Как устроен филамент

В основе ФСЛ лежит технология Chip-on-Glass (COG), ранее уже успешно опробованная при создании дисплеев для мобильных устройств. Она заключается в размещении сверхминиатюрных светодиодов на подложке из искусственного сапфира или, как более дешевый вариант, из специального сорта стекла. Прозрачность подложки позволяет создавать массивы светодиодов, которые светят во все стороны.

Типичный филамент — светодиодный аналог отрезка нити накаливания — представляет собой стержень из искусственного сапфира или стекла длиной диаметром 1,5 мм и длиной 30 мм. На нем при помощи технологии COG размещены 28 светодиодов синего свечения, которые соединены последовательно. В некоторых моделях филамент может содержать несколько светодиодов красного свечения для достижения более теплого оттенка свечения, при этом общее число светодиодов в филаменте также равно 28. Сверху это все покрыто слоем люминофора на силиконовой основе. Потребляемая мощность одного филамента лежит в пределах 0,8-1,3 Вт. Набирая нужное количество филаментов в колбе, можно получить светодиодную лампу требуемой мощности. Известны модели ФСЛ, содержащие до 16 филаментов.

Важным преимуществом филамента по сравнению с традиционными светодиодными матрицами является то, что для равномерного распределения света во все стороны не нужно использовать сложную оптическую систему, вносящую большие потери. Это обеспечивает высокий КПД лампы. Мощность, подводимая кфиламенту, в 1,5 раза выше, чем к традиционной светодиодной матрице, при равном значении светового потока. Уменьшение подводимой мощности означает снижение тепловыделения. Тем не менее, первый вопрос, который возникает у специалиста, впервые взявшего в руки ФСЛ: «Как здесь отводится тепло?». В самом деле, не по элементам же крепления филаментов. Да и теплоотвода никакого, даже простейшего пластмассового, у типичной ФСЛ нет. И здесь мы переходим к другой важной инновации.

Теплоотвод

Филаменты герметично запаяны в стеклянную колбу. Эта колба наполнена специальным газом, обладающим высокой теплопроводностью. Именно через газ и осуществляется отвод тепла от светодиодов. Стеклянная колба с тонкими стенками хорошо проводит тепло, поэтому она и используется в качестве теплоотвода. По утверждению производителей ФСЛ, такая система теплоотвода в ряде случаев оказывается даже более эффективной, чем у светодиодных ламп традиционной конструкции, температура р-n перехода не превышает 60°С.

При изготовлении колб и наполнении их газом используются уже хорошо отработанные для ламп накаливания процедуры. А вот состав газа является производственным секретом, тщательно оберегаемым производителями ФСЛ. Мы можем пока ориентироваться только на неофициальную информацию, размещенную на нескольких профессиональных сайтах, согласно которой колба заполнена гелием — газом с самой высокой (за исключением водорода) теплопроводностью. Другой вариант — смесь газов, где важной составляющей также является гелий.

Параметры ФСЛ

На момент написания статьи (март 2015 года) максимальные значения параметров серийных образцов ФСЛ с обычной колбой типоразмера А60, имеющих коррелированную цветовую температуру 2700 К были следующими:

  • световой поток — 980 лм (соответствует лампе накаливания мощностью 85 Вт);
  • светоотдача всей лампы — 116 лм/Вт (некоторые производители заявляют о значениях до 150 лм/Вт, но эти данные не подтверждены независимой экспертизой);
  • индекс цветопередачи CRI — 90;
  • срок службы, заявленный производителем — 30 000 часов;
  • возможность диммирования.

Следует отметить, что выпускаются ФСЛ со сферической колбой диаметром 95 мм, обладающей большей площадью поверхности, чем колба А60. Это обеспечивает лучший теплоотвод по сравнению с колбой А60, что позволяет достичь светового потока 1500 лм.

К одному филаменту подводится напряжение около 100 В. Поэтому все ФСЛ выпускаются для непосредственного подключения к осветительной сети, низковольтные модели (скажем, на 12 В) не производятся. ФСЛ на момент статьи выпускались под европейские патроны Е27 и Е14, принятые и в России, американские патроны Е26 и Е12, а также под патроны байонетного типа. Последние, как известно, применяются там, где есть тряска и вибрации, например, на кораблях. Данные об устойчивости ФСЛ к вибрации пока нигде не публиковались, но можно предположить, что она выше, чем у ламп накаливания.

Преимущества и недостатки

Большой интерес к ФСЛ со стороны как специалистов, так и обычных потребителей связан с тем, что эти лампы имеют целый ряд неоспоримых преимуществ:

  • полная совместимость по кривой силы света со светильниками, изначально проектировавшимися под лампы накаливания;
  • высокая светоотдача, обусловленная отсутствием оптической системы для равномерного распределения света в разные стороны;
  • возможность снижения себестоимости производства за счет использования уже имеющихся мощностей по производству ламп накаливания;
  • преодоление психологического барьера при использовании светодиодного освещения в быту.

В то же время, ФСЛ свойственны и некоторые недостатки:

  • малое место под драйвер, вследствие чего используются или драйвера упрощенной конструкции с высоким коэффициентом пульсации, или драйвера с высокой степенью миниатюризации без пульсации, которые стоят очень дорого;
  • история практического применения данного типа ламп для общего освещения насчитывает всего около 1,5 лет, поэтому еще нет достоверной статистики о реальной надежности, есть только теоретические расчеты;
  • для ФСЛ принципиально использование стеклянной колбы, так что, в отличие от других типов светодиодных ламп, они не являются небьющимися;
  • пока ФСЛ производятся лишь малоизвестными китайскими компаниями, что усложняет задачу выбора для потребителей, далеких от светотехники.

Проблема, приведенная в п. 1, решается некоторыми производителями путем добавления кольца между цоколем и колбой, что увеличивает место для драйвера. Решение проблемы, указанной в п. 2 — вопрос времени. П. 4 можно объяснить неповоротливостью, характерной для крупных компаний. Впрочем, и здесь ситуация меняется. Недавно известная тайваньская компания Edison Opto начала производить филаменты на основе искусственного сапфира. Соответственно, использование в лампе филаментов от знаменитого производителя является уже некоей гарантией качества (хотя не стоит забывать, что и от драйвера тоже многое зависит). А скоро на прилавках магазинов появятся ФСЛ, произведенные на очень известном крупном заводе с почти 60-летней историей. И это — российское предприятие.

Российское производство

На апрель 2015 г. намечено начало серийного производства первой отечественной ФСЛ. Делать ее будут на знаменитом заводе «Лисма» в Саранске. Речь идет ФСЛ, которая способна заменить 40-ваттную лампу накаливания с цоколем Е27, потребляющей всего 4 Вт. Как сообщает официальная страница «Лисмы» в социальной сети «ВКонтакте», заявленный срок службы новинки равен 10 ООО часам. Розничная цена, как указано там же, составит приблизительно 120 рублей. Столько же стоит КЛЛ с тем же световым потоком. Но, по сравнению с КЛЛ, потребитель получает в 2 раза меньшее энергопотребление, на 25% больший срок службы, мгновенный старт и возможность использования лампы в самых разнообразных светильниках.

Лампа будет производиться с использованием китайских драйвера и филаментов. Изготовление колбы и цоколя, установку филаментов и наполнение колбы газом, а также сборку лампы будут осуществлять на «Лисме».

Перспективы ФСЛ

С использованием более длинных филаментов, в 2014 году Китае были созданы светодиодные лампы Т8. Правда, пока эта идея дальнейшего развития не получила.

Кроме этого, серийно выпускаются ФСЛ для замены рефлекторных ламп накаливания. Казалось бы, зачем применять данную технологию, когда проблем с совместимостью на уровне кривой силы света у светодиодных ламп, аналогичных рефлекторным лампам накаливания, не возникает? К тому же, дизайнеры светильников практически никогда не оголяют колбы рефлекторных ламп накаливания. Возможно, к выпуску рефлекторных ФСЛ производителей подтолкнула именно высокая технологичность их производства.

И, наконец, австрийская фирма Soft LED продвигает на рынок такое решение, как ФСЛ с. молочной колбой. В такой лампе филаменты, имитирующие нить накаливания, не видны. Тем не менее, их использование позволило обойтись без специального теплоотвода.

Перечисленные примеры показывают, что сочетание технологии COG и отвода тепла от светодиодов с помощью газа само по себе оказалось очень удобным в производстве. Поэтому ФСЛ будут развиваться и в сторону тех применений, где не требуется точное воспроизведение дизайна лампы накаливания.

Ссылка на основную публикацию