Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Расчет солнечного коллектора для ГВС

Солнечная энергетика – это не только свет, преобразованный в электричество. Это еще и горячая вода, и тепло в доме. Чтобы преобразовать энергию солнечного излучения в тепло, нужны специальные установки – солнечные коллекторы. В период с апреля по октябрь эти установки снабжают дома горячей водой, а в осенне-зимний период совместно с традиционными источниками энергии отапливают помещения.

Владельцам коттеджей, загородных домов использование солнечных коллекторов дает существенную экономию средств, так как горячая вода поступает в дом практически бесплатно. Но для того, чтобы эти установки работали в самом оптимальном режиме, перед тем, как выбрать тип установки, ее месторасположение, необходимо выполнить хотя бы приблизительный, прикидочный расчет солнечного коллектора для ГВС (горячего водоснабжения).

Пример расчета для плоского гелиевого конвертера

Для начала нужно установить, какое количество солнечной энергии попадает на поверхность, установленную перпендикулярно лучам солнца. Известно, что на один квадратный метр поверхности, находящейся за пределами атмосферы, попадает 1367 ватт энергии Солнца.

Проходя через атмосферу, солнечное излучение теряет в мощности от трехсот до пятисот ватт. Поэтому на поверхность Земли в ясную безоблачную погоду в средних широтах на один квадратный метр попадает от 800 до 1000 ватт мощности. Для расчетов принимается среднее значение – 900 ватт. Для упрощения расчетов в качестве модели используется условный солнечный конвертер площадью в один квадратный метр.


Схема тепловых потерь плоского солнечного коллектора

Модель коллектора, принятая для расчетов, представляет собой установку, рабочая поверхность которой защищена специальным закаленным противоударным стеклом с антибликовым покрытием. Абсорбер покрыт жаропрочной селективной черной краской. Тем самым обеспечивается практически 100% поглощение тепловой энергии. Тыльная сторона коллектора представляет собой слой теплоизоляции толщиной в десять сантиметров. Теплоизоляция чаще всего выполняется на основе минеральной ваты. Чтобы рассчитать потери тепла, неизбежно возникающие на теневой стороне, необходимо знать коэффициент теплопроводности минеральной ваты. Для легкой минеральной ваты этот коэффициент составляет 0.045.

Для расчета предполагается, что разница температур на лицевой и тыльной сторонах теплоизоляции составляет до 50°. Следовательно, при толщине теплоизоляции десять сантиметров потери тепла составят:

Примерно такие же потери тепла возможны с торцевых поверхностей коллектора и от труб. Таким образом, суммарные потери тепла составят 45 ватт. Для расчета необходимо внести корректировочные поправки на возможную облачность, загрязнение стекла коллектора, налипание посторонних предметов (например, листьев с деревьев). Поэтому в расчете следует принять нижнюю границу значения мощности солнечной энергии, приходящейся на один квадратный метр – 800 ватт на один квадратный метр. В качестве теплоносителя в плоских солнечных конвертерах используется вода. Чтобы нагреть один литр воды на один градус, необходимо затратить энергию в 4200 джоулей, что соответствует мощности в 1.16 ватта.

Зная эти величины, можно рассчитать то количество воды, которое будет нагрето в течение одного часа в условном солнечном коллекторе с рабочей площадью в один квадратный метр:

То есть за один час гелиевый коллектор площадью в один квадратный метр сможет нагреть на один градус почти 700 литров воды. Из этого расчета следует, что если необходимо нагревать воду на два, три, десять градусов, то расходуемую мощность необходимо соответственно увеличивать.

800 : (1.16 × 10) = 68.96

Следовательно, чтобы в течение часа нагреть воду на десять градусов, через условный солнечный коллектор нужно пропустить не более 69 литров воды (вес одного литра воды равен одному килограмму). Согласно санитарным правилам и нормам (СанПиН), принятым в 2009 году, температура горячей воды, подаваемой в дома, должна находиться в пределах от +60°С до +75°С.

Как показывает практика, для поддержания комфортных условий среды обитания на одного человека требуется в среднем примерно 50 литров горячей воды в день. Для расчета количества энергии принимаем это значение и верхнее значение температуры – +75°С. Поскольку холодная вода, поступающая в коллектор, имеет начальную температуру порядка +10°С, мы получаем ту разницу температур, на которую необходимо нагреть воду:

Коллектор следует расположить таким образом, чтобы угол наклона его примерно соответствовал географической широте местности, а ориентация была бы на юг. Возможны небольшие отклонения на юго-восток или юго-запад.

Для определения количества тепла, необходимого для нагрева 50 литров воды на 65°, применима формула:

W = Q × V × Tp = 1,16 × 50 ×65 = 3770 (ватт энергии)

Теперь остается вычислить площадь гелиевого коллектора. По таблицам метеорологов для данной конкретной местности следует уточнить то количество энергии Солнца, которое получает здесь один квадратный метр поверхности. Для нашего расчета это значение принято 800 ватт. Разделив вычисленное значение W количества энергии на 800 ватт, мы получим искомую площадь коллектора:

3770 : 800 = 4.71 (квадратных метров)

Это значение соответствует значению площади гелиевого коллектора, который обслуживает одного человека. Для нагрева воды для двух, трех или более человек эту площадь следует увеличить в соответствующее число раз. При стандартных размерах рабочей площади в 2.0 м² – 2.2 м² для нагрева воды на семью из трех человек необходимо установить шесть плоских солнечных коллекторов.

Аналогичным образом производится расчет площади и количества гелиевых коллекторов для организации отопления. Единственное, на что нужно будет сделать поправку, так это на объем теплоносителя, так как в данном случае его потребуется больший объем.

Графический метод расчета системы горячего водоснабжения

Поскольку для определения количества оборудования, которое необходимо приобрести для организации солнечного нагрева воды и подачи ее в дом, особая точность не требуется, многие изготовители и поставщики систем горячего водоснабжения разработали собственные методики расчета, воплотив их в простейшие графики.

По таким графикам любой потенциальный покупатель может самостоятельно определить свои потребности в тех или других компонентах системы нагрева воды. Ниже приведен один из таких графиков. Чтобы определиться с составом оборудования, необходимо выполнить несколько последовательных шагов.


Графическое определение состава оборудования для горячего водоснабжения

  1. Определить количество постоянных потребителей.
  2. Задать примерный объем расходуемой воды.
  3. На основании этих данных определить рекомендуемый объем бойлера.
  4. Задать оптимальную степень замещения суточных потребностей в тепле на энергию солнца.
  5. Выбрать грубо («Север» – «Юг») вашего месторасположения.
  6. Определить предполагаемую ориентацию гелиевых коллекторов.
  7. Задать угол наклона коллекторов по отношению к горизонту.

Выполнив эти действия, вы получите примерный состав оборудования, которое необходимо для удовлетворения ваших потребностей в горячей воде, а именно объем бойлера, количество коллекторов. А уж за вами остается решение, как именно использовать это оборудование – в качестве основной или вспомогательной системы горячего водоснабжения.

Зная состав системы ГВС, можно легко рассчитать стоимость всех компонентов, а также приблизительно рассчитать сроки окупаемости этого оборудования.

Выбор и монтаж солнечных коллекторов

Все чаще современные строители и дизайнеры обращаются к энергосберегающим конструкциям, экологически чистым материалам и альтернативным источникам энергии. Особенно важным является именно последний пункт, поскольку отопление частного дома и нагрев воды при использовании традиционных способов обходится совсем не дешево.

Одним из вариантов таких источников является солнечный свет, а оборудование, которое превращает солнечную энергию в тепловую, называется коллектором. На современном рынке представлено несколько видов солнечных коллекторов, которые отличаются между собой мощностью, габаритами, КПД, сферой применения и т.д.

Какие бываю солнечные коллекторы?

Условно всех их можно поделить на вакуумные трубчатые и плоские.

Плоские коллекторы используются чаще трубчатых, что в большинстве случаев можно объяснить более доступной ценой. Обычно они служат для нагрева воды, потому что для отопительного оборудования у них слишком низкий КПД, особенно зимой.

Плоские коллекторы в свою очередь делятся на 3 типа:

  • коллекторы с абсорбером с селективной оболочкой;
  • вакуумные коллекторы;
  • коллекторы с абсорбером, имеющим оболочку из черного лака.

Первый тип используется только для нагрева воды преимущественно в теплое время года. КПД таких коллекторов довольно низкий – всего 25-35%, к тому же есть опасность образования конденсата на их поверхности. Монтируются они над кровельным материалом или вровень с ним.

Второй тип – вакуумные коллекторы – обладает более высоким КПД, достигающим 45%. Вакуумные коллекторы надежно защищены от образования конденсата и попадания в них пыли. Правда, некачественные изделия могут довольно быстро разгерметизироваться, что скажется на их работе. Чтобы они снова заработали на полную мощность, нужно будет восстановить вакуум, что своими силами достичь практически невозможно. Стоят вакуумные коллекторы дороже, чем коллекторы с селективной оболочкой, но поскольку они более мощные, их площадь меньше.

Третий тип – коллекторы с абсорбером, покрытым черным лаком – имеет теплопотери, на 50% превышающие теплопотери первого типа.

Монтаж солнечных коллекторов

Монтаж солнечных коллекторов может осуществляться над кровельным материалом, вровень с ним или же на специальной конструкции. Выбор места расположения зависит от типа крыши, ее конструкции, наклона скатов, а также их ориентации относительно сторон света.

Над кровельным материалом коллекторы можно устанавливать, если крыша скатная, а угол наклона ската достаточно большой. В этом случае они монтируются с помощью специальных профилей или кронштейнов, которые крепятся к доскам контробрешетки или стропилам. Вся конструкция должна выступать за края черепицы, чтобы не нарушать герметичности кровельного слоя. Коллектор может закрепляться как непосредственно на кронштейнах, так и на монтажных профилях, прикрепленных к кронштейнам. Для защиты от ветра могут использоваться также дополнительные накладки или специальные элементы. Если коллекторов несколько, между собой они соединяются гофрированными трубками. Чтобы избежать накопления воздуха внутри коллекторов, они слегка наклоняются в сторону, противоположную подсоединению. К системе отопления или нагрева воды коллекторы подключаются с помощью гофрированных труб, выполненных из нержавеющей стали. Трубы эти подводятся к коллекторам через вентиляционные каналы. Преимуществами такого монтажа является его быстрота, небольшая стоимость работ и вывод соединительных патрубков наружу. К недостаткам можно отнести значительные теплопотери.

Читайте также:  Подхваты для штор своими руками – оригинальные варианты

Коллекторы, смонтированные вровень с кровельным материалом, смотрятся более привлекательно, кроме того, в этом случае под ними не нужно укладывать сам кровельный материал, что сокращает расходы на него. Крепятся они к доскам обрешетки специальными зажимами. Здесь нужно проследить, чтобы стыки коллекторов и кровли не имели зазоров, а были герметичными. Угол наклона ската при этом должен быть не менее 25°. Стоимость монтажа коллектора вровень с кровлей стоит дороже, чем его монтаж над кровлей.

Коллекторы на специальных конструкциях обычно устанавливаются на плоских крышах. Плюсом таких установок является наиболее простой и быстрый монтаж, а также возможность изменения угла их наклона в соответствии с климатическими условиями и ориентацией относительно сторон света. Оптимальным углом наклона считается угол в 45°. Если на одной крыше устанавливаются несколько коллекторов, причем располагаются они один за другим, то нужно соблюдать дистанцию между ними, при которой передние коллекторы не будут затемнять задние. Минимальное расстояние между ними зависит от угла наклона и должна превышать высоту не менее чем в 1,5 раза. Для лучшей фиксации конструкции и защиты от ветра она монтируется на бетонных плитах или ящиках со щебнем. Герметичность кровельного слоя в этом случае не нарушается, зато увеличивается нагрузка на крышу и несущие элементы, поэтому перед установкой нужно проконсультироваться с архитекторами и выяснить, вынесет ли конструкция дома такие дополнительные нагрузки.

Каким должен быть угол наклона коллектора?

Угол наклона коллектора – еще одна немаловажная его характеристика. Этот параметр определяет количество солнечных лучей, которые падают на поверхность коллектора на протяжении светового дня, от чего напрямую зависит его эффективность. Конечно, солнце на протяжении суток и в разное время года меняет свое положение, так что улавливать постоянно максимальное количество солнечной энергии коллектор не может. Здесь нужно подбирать такой его наклон, который бы обеспечил максимально возможное его освещение в любое время. Для примера, коллекторы для нагрева воды должны устанавливаться под углом 45°, что составляет среднее значения между оптимальными углами наклона в летнее (30°) и зимнее (60°) время года. Регулировать наклон можно только у коллекторов, смонтированных на плоских крышах – на скатных крышах этот параметр определяется конструкцией кровли. Но это не значит, что такие коллекторы неэффективны. При наклоне в диапазоне 35-50° их КПД незначительно отклоняется от максимального значения.

Для наиболее эффективной работы коллекторы желательно ориентировать на юг, если позволяет конструкция крыши (особенно это касается скатных крыш). В противном случае их КПД значительно уменьшится, что особенно ощутимо зимой, и не поможет даже увеличение площади коллекторов. Если коллекторы используются только для нагрева воды, их можно ориентировать между юго-западным и юго-восточным направлением.

При использовании нескольких коллекторов, соединенных между собой, все они должны быть направлены в одну сторону. Если же разместить их под разными углами и развернуть в разные стороны, каждый из них будет регулировать отдельный поток теплоносителя, то есть такая система не будет работать, как одно целое, а поделится на несколько самостоятельных систем.

Какой должна быть площадь коллектора? Формула расчета

Площадь солнечных коллекторов зависит от необходимой для нагрева воды или отопления мощности, интенсивности солнечного излучения для данной территории, КПД каждого коллектора, входящего в состав системы, доли энергии солнца в покрытии потребности в тепле, а также теплопотерь. Производители солнечных коллекторов рассчитывают их площадь и количество с помощью специальных программ, используя различные графики и диаграммы. Но для вычисления площади коллекторов небольшого для частного дома не обязательно углубляться в сложные и малопонятные расчеты, достаточно использовать формулу:

А – площадь коллекторов, м2;

AW – приведенная площадь, которая способна генерировать 1кВт•час за один день, м2•день/(кВт•час);

Η – КПД одного коллектора, %;

G – полное излучение солнца за один день, характерное для данной местности, кВт•час/(м2•день);

К – коэффициент, учитывающий величину угла наклона коллекторов и их ориентацию относительно сторон света (выбирается из таблицы);

F – энергия, необходимая для нагрева воды или отопления дома на одни сутки, кВт•час/день;

SF – доля энергии солнца в покрытии потребности в тепле, %.

Доля солнечной энергии – это та часть энергии, которую производит солярная установка, от общей энергии, затрачиваемой на обогрев или нагрев воды. Обычно ее значение составляет от 60 до 70% от годового потребления энергии. Солярные установки с большей долей солнечной энергии используются в паре с вспомогательными газовыми котлами, работающими на низком уровне.

Данные, необходимые для проведения расчета площади, могут значительно отличаться между собой в зависимости от типов коллекторов, их моделей и производителей.

Установка солнечных коллекторов. Видео

Установка (монтаж) солнечных коллекторов. Выбор коллектора. Расчет площади

Установка вакуумного солнечного коллектора – выгодная инвестиция в будущее своей семьи. Круглогодичный доступ к горячей воде, бесплатная энергия для отопления дома, независимость от работы коммунальных служб и отсутствие перебоев в горячем водоснабжении – преимущества, которые особенно ощутимы в холодное время года.

Факторы влияния на работу вакуумного коллектора

Для того чтобы вакуумные коллектора эффективно функционировали и приносили пользу по назначению, необходимо точно рассчитать и подобрать всю комплектацию оборудования для решения той или иной задачи. Недостаточная производительность коллекторов приведет к нехватке тепловой энергии для отопления дома, бани, теплицы и других сооружений, подогрева воды для ежедневного использования или для наполнения бассейна. Установка коллекторов избыточной мощности не только не рациональна с точки зрения лишних финансовых затрат , но и может вызвать дополнительную нагрузку на систему в летний период, когда потребности в энергии снижаются, а активность солнца возрастает. Необходим некий оптимальный вариант и, поэтому, расчет и подбор комплекта оборудования на основе солнечных коллекторов следует доверить специалистам, так как на дальнейшую эффективность работы такой системы влияет немало факторов.

При подборе гелиоустановки важно учитывать следующие данные:

1) Уровень инсоляции (солнечного излучения) в той географической точке и те месяцы, в которые рассчитывается эксплуатация оборудования;
2) КПД коллектора (зависит от типа установки; для вакуумных солнечных коллекторов коэффициент, в среднем, колеблется в пределах 67-80%. Для большей достоверности рекомендуется ориентироваться на минимальный результат);
3) Угол наклона коллектора (от данного показателя зависит количество солнечной энергии, которую поверхность коллектора будет поглощать в течение светового дня. Необходимый угол наклона, под которым будет установлен коллектор, индивидуален и зависит от региона, географических и климатических особенностей местности);
4) Эффективная площадь поглощения коллектора.
Кроме того, важно учитывать и площадь отапливаемого помещения, хорошо ли оно утеплено или нет, потребляемый объем горячей воды, тип отопительной системы (радиаторы или теплые полы), тип самого коллектора, характер теплоносителя в системе и дополнительные условия, которые влияют на эффективную работу вакуумной гелиоустановки.

Характеристики вакуумных трубок – исходная точка расчета ее мощности

При расчете эффективности применения солнечных коллекторов для целей отопления и ГВС необходимо учитывать характеристики вакуумных трубок. Стандартная вакуумная трубка имеет 1800 мм в длину, внешний диаметр – 58 мм, внутренний – 47 мм. Конструкция двух стеночная. Цилиндры имеют различную толщину: внешний более прочный – 1,8±0,15мм, внутренний – 1,6±0,15мм. Пространство между стенками заполнено вакуумом (менее 5х10-3 Па) и создает преграду для потерь тепла (принцип работы колбы термоса).
В качестве материала для изготовления применяют боросиликатное стекло. Селективное покрытие на наружной поверхности внутреннего цилиндра – напыление композита из нержавеющей стали, алюминия и меди – способствует улучшенному поглощению солнечного излучения.
Цилиндрическая форма стеклянной трубки при соблюдении основных требований установки обеспечивает более 91% поглощения всей поступившей на поверхность энергии. Теплопотери при этом не превышают 8% (при температуре носителя около 80°C). Коэффициент таких потерь для вакуумной солнечной установки не более 0,6Вт/м 2 .

Определяем площадь эффективного поглощения

Расчет площади эффективного поглощения солнечного коллектора сделаем на примере популярной модели солнечного коллектора модели SCH-30, имеющей в своем составе 30 вакуумных трубок стандартного типоразмера. Определив эффективную площадь поглощения одной трубки и умножив ее на 30 получим общую эффективную площадь поглощения коллектора. Площадь поглощения одной трубки – фактически площадь «тени» , создаваемой трубкой при ее освещении солнцем. Это проекция трубки на плоскость , проходящую через ее диаметр. Поскольку диаметр трубки 58 мм или 0,058 м, а длина трубки участвующая в приеме солнца порядка 1600 мм или 1,6 м (общая длина трубки 1800 мм, но верхняя и нижняя ее часть закрыты элементами конструкции и в работе участия не принимают), тогда площадь «тени» составит 0,058 м * 1,6 м = 0,092 м 2 . А общая эффективная площадь поглощения коллектора 0,092 м 2 * 30 шт. = 2,77 м 2 . Аналогичным образом можно получить, что у коллектора модели SCH-18 (18 вакуумных трубок) эффективная площадь поглощения составит 1,66 м 2 , у модели SCH-20 (20 вакуумных трубок) – 1,86 м 2 , а у модели SCH-24 (24 вакуумных трубки) – 2,21 м 2 .

Читайте также:  Монтаж оконных откосов для пластиковых окон своими руками

Расчет вырабатываемой энергии солнечным коллектором

Годовая вырабатываемая солнечным коллектором энергия определяется географической точкой установки коллектора и статистическими данными по годовой солнечной инсоляции в этом регионе. Так, для Москвы и Московской области показатель солнечной инсоляции за год составляет 1173,7кВт*час/м 2 . Используя полученное значение эффективной площади поглощения коллектора мы можем рассчитать вырабатываемую им за год энергию. Так коллектор модели SCH-30 выработает 2,77 м 2 * 1173,7 кВт*ч/м 2 = 3251,15 кВт*ч, но с учетом кпд=80 % только примерно 2600,0 кВт*ч.

По такому же методу легко произвести расчет производимой вакуумным солнечным коллектором энергии с любым другим количеством трубок. Например, вакуумный коллектор модели SCH-20 (20 вакуумных трубок) выработает за год 1173,7 кВт*ч/м 2 * 1,86 м 2 * 0,8 =1746,0 кВт*ч.

Беря статистические данные по солнечной инсоляции за месяц можно подсчитать количество вырабатываемой энергии за месяц.

Тем ни менее хочется сказать, что подбор оборудования – процесс сугубо индивидуальный для каждого клиента. Самостоятельный просчет мощности дает лишь весьма приблизительные значения, а риск не учесть один, казалось бы, незначительный фактор, может заметно снизить КПД системы. Доверяя расчет солнечного коллектора профессионалам, легко стать обладателем максимально эффективного оборудования. Но в любом случае все расчеты носят условный характер. Погодный условия на планете меняются, солнечная активность тоже. Данные по солнечной инсоляции носят очень усредненный показатель и год от года могут сильно меняться.

Для заказа обратного звонка или связи со специалистом воспользуйтесь формой ниже или звоните по телефону

+7 (495) 640-70-49, +7 (985) 923-35-37

Бесплатно произведем расчеты и ответим на все Ваши вопросы.

Упрощённый тепловой расчет солнечного коллектора

Начальная температура воды, поступающая в дом из водопровода, составляет 10°С, а использование этой воды для нужд (умывание, душ, отопление, уборка и пр.) требует ее подогрева. Конечно, для ее разогрева хотя бы до 40 градусов потребуется затратить энергию – газ, дрова, электроэнергия, одним словом, заплатить за ее нагрев. Зимой солнечный коллектор сможет подогреть воду от 40 до 70°С, а летом – до 100 °С.

Попробуем разобраться, насколько эффективным будет использование солнечного отопления.

В солнечный день на каждый квадратный метр поверхности, которая установлена перпендикулярно солнечным лучам, на протяжении одного часа попадает от 700 до 1350 Ватт солнечной тепловой энергии. В зависимости от атмосферного состояния. Для примера возьмем среднее значение, т.е. 1000 Вт/м 2 .

Чтобы нагреть 1 кг (л) воды на 1 градус потребуется приблизительно 1,16 Вт. Теперь представим солнечный коллектор, площадь которого составляет 1 м 2 . Поглощение тепла стороны, которая обращена к солнцу, составляет практически 100%. Из этого следует, что наш коллектор, площадью 1м 2 сможет нагреть воду на один градус:

1000 Вт / 1,16 Вт = 862,07 кг воды.

Чтобы было удобнее, считаем, что К=862 кг х ОС х м2 х час. Это соотношение показывает какое количество воды на сколько градусов можно нагреть за 1 час в солнечном коллекторе, площадь которого составляет 1 м 2 .

Для примера, солнечный коллектор в комплекте, который состоит из 15 вакуумных трубок, площадью 3м 2 . Самый оптимальный объем термоса для жидкости этого коллектора – 150 литров. Продолжительность нагрева такого количества воды до 45°С в холодное время года составляет:

(150 л х (45°С – 10°С)) / (3 м2 х 862 кг*оС*м2*час) = 5250 /2586=2,03 час.

Чтобы обеспечить нагрев 150 литров воды до температуры до 45°С солнечная установка сможет за 2 часа. Если учитывать теплопотери коллектора и тот факт, что атмосфера не всегда чистая и прозрачная, а солнечный коллектор не идеально чистым, то время нагрева зимой увеличивается до 4 часов.

Проведем расчёт для нагрева заданного объема воды элекроэнергией.

t = (m ∙ c ∙ Δϑ) / (P ∙ η)
где, t – время нагрева в часах=1ч. c = 1,163 (Ватт/час) / (кг ∙ К), m – количество воды 150 кг, P – мощность в Вт, η – КПД = 0,98, Δϑ – разность температур в К (ϑ2 – ϑ1)=35°C ϑ1 – температура холодной воды в10 °C ϑ2 – температура горячей воды в 45°C

P = (m ∙ c ∙ Δϑ) / (t ∙ η)=(150∙ 1,163 ∙ 35) / (1 ∙ 0,98)=6230Вт.=6,23 кВт/ч.

Следовательно, чтобы разогреть 150 литров воды с помощью электроэнергии, с учетом теплопотерь, то Вы заплатите от 7 до 8 кВт.ч. х 2,3 рубля=от 16 до 20 рублей, а за 300 литров – от 32 до 40 рублей. Подведем итог: зимой один солнечный коллектор, площадь которого составляет 3 м 2 , сэкономит ваш расходы от 20 до 40 рублей в день.

Произведем расчет расхода горячей воды для семьи, состоящей из трех человек. Если день начинается с 10-минутного душа для каждого из членов семьи, то использование теплой воды составляет 8 литров в минуту. Следовательно, на прием душа уходит: 3 чел. х 10 мин. х 8 л/мин = 240 литров теплой воды. Дальше завтрак, после которого на мытье посуды нужно примерно 15 минут с расходом теплой воды 3 л/минуту. Так, для того чтобы вымыть посуду понадобиться: 15 мин. х 3 л/мин = 45 литров теплой воды. Если предположить, что вечером расход воды будет приблизительно таким же, а также добавить уборку, стирку и прочие потребности, то добавим еще 100 литров. В результате расход теплой воды утром или вечером составит: 240+45+100=385 литров. При подсчетах видно, что в среднем на одного члена семьи приходится 100-150 литров горячей воды в день. Тогда, для того, чтобы обеспечить семью горячей водой в холодное время года, Вам потребуется два коллектора и бак на 300 литров. Если Вы планируете использовать солнечное тепло в максимальном объеме и использовать его для разогрева отопления, тогда Вам рекомендуется купить шесть коллекторов и накопительный бак на 500 литров воды. Солнечная установка очень эффективная, также Вы сможете сэкономить значительную сумму денег. Вышеприведенный расчет – это упрощенный расчет, который основан на зимнем периоде, а с приходом весны и лета солнечная активность значительно возрастет, следовательно, возрастет эффективность такого оборудования. В летний период человек более активный и используется большее количество горячей воды: принимает душ, бассейн, моем посуду, стираем и пр. Летом температура воды вырастает от 60 до 95°С, и тогда возникает новый вопрос – куда девать лишнюю воду, но следует помнить, что Вы не будете платить денег за ее нагрев. Итог: в теплый солнечный период эффективность использования солнечного оборудования вырастает в два раза, а шестиколлекторная солнечная установка, площадь которой 18 кв.м., сэкономит в холодное время года от 90 до 200 рублей в день, а летом – от 180 до 400 рублей в день. Если количество холодных и теплых дней в году приблизительно одинаковое, тогда можно провести такой расчет, при котором экономия будет составлять от (90 +200) : 2 = 145, до (840 +1920) : 2 = 290, теперь умножим на 365 дней и получим сумму от 52925 до 105000 рублей в год.

Полную окупаемость всех затрат на покупку солнечного оборудования можно ожидать от одного до двух лет. При покупке коллекторной солнечной установки Вы заплатите только один раз. Срок ее эксплуатации от 15 до 25 лет, притом, что работает она постоянно.

Расчет тепловой мощности от гелиосистем. Окупаемость солнечного коллектора.

Добрый день, уважаемые читатели. Хотим поделиться расчетом выделения тепла солнечными установками.

Солнечная инсоляция – это облучение поверхностей солнечным светом, поток солнечной радиации на поверхность; облучение поверхности или пространства параллельным пучком лучей, поступающих с направления, в котором виден в данный момент центр солнечного диска.

Для примера рассмотрим плоские солнечные панели Vaillant VFK 135/2 VD (Германия). Площадь (абсорбер) одно коллектора 2,33 м2. Сколько тепла можем получить от одного коллектора? Для этого нам нужно знать КПД панели и солнечную инсоляцию в данный период времени. Существует таблица, в которой разбито по месяцам средняя солнечная инсоляция в сутки на 1 м2 площади поверхности.

Читайте также:  Как клеить бумажные обои встык: инструменты, материалы, технология

Берем декабрь – самый наименьший показатель инсоляции в году 1,86 кВт*ч/сутки. Коэффициент КПД одной панели Vaillant VFK 135/2 VD – 78,5%. Следовательно одна панель в декабре месяце (в среднем) 1,86*2,33*0,78=3,38 кВт*ч/сутки. (1,86 кол-во инсоляции в декабре, 2,33 площадь абсорбер солнечной панели, 0,78 КПД солнечной панели).

Теперь приведем пример в июле месяце. 6,28*2,33*0,78=11,41 кВт*ч/сутки. В июле продолжительность солнечного дня составляет 15 часов, 11,41/15=0,76 кВт/час. Для примера этой мощности хватит, что бы нагреть два бойлера по 100 литров при входной температуре 15 градусов до 65 градусов за 16 часов, тем самым обеспечить ГВС (горячим водоснабжением) семью из 3-4 человек.

Окупаемость солнечных коллекторов. Чем выше вклад установки в потребление тепловой мощности потребителем, тем меньше ее срок окупаемости. В основном это коттеджи, гостиницы, санатории, пансионаты и пр. объекты, где большой расход тепловой энергии на нагрев воды, подогрев бассейна, поддержка существующей системы отопления. Для примера возьмем гостиницу на 15 номеров с потреблением воды (50 градусов) 2500 л/сутки. 50 человек по 50 литров горячей воды.

Проведем расчет количества тепла (Q) для нагрева воды от текущей температуры (tт) до заданной (tз). Формула Q = G х Ro х C х (tт – tз) – 2,5*1000*1(50-15)=87500 ккал (2,5 м3 воды, 1000 плотность воды кг/м3, 1 удельная теплоемкость воды, 50 температура нагретой воды, 15 начальная температура воды). Переведем ккал в кВч (1000 ккал = 1,16 кВч). 87,5*1,16=101,5 кВч. Для нагрева 2500 литров воды с 15 до 50 градусов потребуется затратить 101,5 кВч. Исходя из объектов, где используются солнечные панели с таким потреблением воды, рассчитаем их окупаемость. 10 панелей по 2,33 м2 площади абсорбера, получаем общую площадь 23,3 м2. Считаем количество тепла, в сезонное время (апрель-сентябрь). Приводим максимальное значение (условия полное потребление 2500 литров горячей воды в день). 23,3*0,78*4,58=85,37 кВч (Апрель) 23,3*0,78*5,51=100,13 кВч (Май) 23,3*0,78*5,89=107,04 кВч (Июнь) 23,3*0,78*6,28=114,13 кВч (Июль) 23,3*0,78*5,62= 102,13 кВч (Август) 23,3*0,78*4,75 = 86,32 кВч (Сентябрь).

По диаграмме видно, что 10 панелей способны обеспечить пиковую нагрузку на протяжении летнего сезона, апрель и сентябрь вряд ли будут нуждаться в пиковых нагрузках на приготовление горячей воды, а если все таки потребуется, есть альтернативный источник тепла к примеру электрический котел. Итого за 6 месяцев суммарно нагревая 2500 литров воды с 15 до 50 градусов каждый день солнечная установка из десяти плоских панелей способна выработать до 17300 кВт тепловой энергии в курортный сезон.

Рассчитаем на примере подогрева воды электричеством, 1 кВт возьмем для примера стоимостью 5 руб. Итого за сезон мы бы затратили/сэкономили 17300*5=86500 руб. Что бы рассчитать окупаемость, нужно взять стоимость установки в целом, включая материалы для монтажа, стоимость работ. У каждого производителя солнечных гелиоколлекторов свои нюансы, и своя стоимость. Далее стоит поделить сумму вложения установки на 86500 и получим кол-во лет, за которые она полностью окупится. Сумма вложений 800 тыс рублей, окупаемость = 9 лет.

Солнечный коллектор: изготовление своими руками и особенности эксплуатации

Владельцы частных домов часто задаются вопросом, как минимизировать расходы на отопление и горячее водоснабжение. Вариантов решения может быть несколько, однако в условиях роста цен на энергоресурсы они оказываются достаточно затратными.

В такой ситуации использовать солнечные коллекторы для отопления дома оказывается выгодно, особенно при нечастом посещении дачи в теплое время года.

Краткое содержимое статьи:

Достоинства оборудования

Для функционирования коллекторов не требуется использование дополнительных источников энергии. Работа оборудования базируется на применении возобновляемых природных источников энергии.

Каждый квадратный метр коллектора обеспечивает среднегодовую экономию 800 кВт. Даже в зимний период существует возможность обогревать до 30-40% жилой площади в загородном доме.

Конечно, КПД зависит от типа устройства и его модели, но уже сейчас автоматизированные модификации дают 75%-е преобразование энергии солнца в целях отопления.

На фото солнечных коллекторов представлены различные модели. Большинство из них обладает такими преимуществами:

  • обеспечение автономного отопления и подогрева воды в любое время года;
  • длительный период эксплуатации;
  • высокий уровень окупаемости – в среднем до 4-5 лет;
  • независимость от роста тарифов на энергоресурсы;
  • использование для отопления жилых и хозяйственных помещений;
  • возможность простого подключения к существующей автономной системе отопления;
  • экологичность оборудования;
  • минимизация нагрузки на внутреннюю электросеть;
  • мобильность с позиций подстройки под конкретные условия эксплуатации.

Однако прежде чем изучать инструкцию, как можно собрать солнечный коллектор, необходимо понять и его недостатки.

Во-первых, это высокая стоимость самого оборудования, которое может быть доступным не каждому дачнику.

Во-вторых, эффективность работы устройства зависит от множества факторов – климатических условий, окружающего ландшафта, формы и направленности ската крыши, продолжительности светового дня и т.д.

Разновидности оборудования

В южных солнечных регионах КПД использования может достигать 95%, хотя в северных районах эффективность значительно снижается. Для тех, кто интересуется, какие бывают солнечные коллекторы, целесообразно рассмотреть основные виды солнечных коллекторов.

Плоская модель

В специальном ящике из алюминия смонтированы медные трубки. В нижней части устанавливается теплоизоляционная защита. Верхнюю поверхность конструкции представляет полотно из закаленного стекла и пропилен-гликоля. Оно обеспечивает поглощение лучей солнца для последующего преобразования устройством в тепловую энергию. Это бюджетный вариант оборудования, которое работает круглогодично.

Вакуумная модификация

Устройство содержит в своей конструкции множество трубок, изготовленных из меди. Они располагаются равномерно рядами. Трубка, содержащая вещества с поглощающим и отражающим эффектом, устанавливается в большую по диаметру стеклянную трубку-колбу.

Между их стенками остается пространство с вакуумом. Он играет роль теплоизолятора и проводника энергии. У вакуумных коллекторов площадь поглощения солнечной энергии больше, а поэтому они обладают высоким КПД.

Воздушный коллектор

В работе используется парниковый эффект. Попадающие на покрытие коллектора лучи полностью поглощаются. После получения заряда приемником он начинает нагревать воздух, расположенный во внутренней полости. Этот разогретый воздух направляется в помещение при помощи вентилятора или посредством конвекции естественного типа.

Особенности выбора оборудования

Чтобы выбрать хороший солнечный коллектор для нагрева воды и обогрева, необходимо учесть такие параметры:

  • Плоские модели отличаются повышенной прочностью, но поломка может испортить всю адсорбционную систему. Нагревают воду на 30-40 градусов теплее среды.
  • Вакуумные модификации подвержены воздействию внешних факторов, а их полые трубки очень хрупкие. Отличаются эффективностью в зимний период.
  • Воздушные модели конструктивно просты, не требуют обслуживания, способны работать при низких температурах. Степень прогрева меньше по сравнению с другими моделями.
  • При покупке надо определиться с проектом системы и способом крепления.
  • Вертикальный монтаж выгоден в регионах с большим количеством снега, но КПД при этом будет снижаться.
  • Оптимальный способ монтажа – строго на юг или со смещением до 30 градусов.
  • Номинальная мощность устройства задает выработку тепла при расположении солнца в зените.
  • Для морозных периодов требуется оборудование с повышенным сохранением температурного режима.

Как установить солнечный коллектор

После того как устройство куплено, главным вопросом становится установка и подключение солнечных коллекторов своими руками. При эксплуатации в летний период устройство можно применять для летнего душа и хозяйственных потребностей.

Для организации подачи воды в летнее сооружение бак целесообразно ставить на воздухе, а если обеспечивается водоснабжение дома, то монтаж аккумулирующей емкости производится там же.

При использовании принципа естественной циркуляции жидкости, коллектор ставится ниже уровня бака для горячей воды. Разница в высоте обычно составляет 80-100 см. Движение воды обеспечивается расхождением в плотности воды с разной температурой.

Коллектор соединяется с баком при помощи труб, диаметр которых не меньше 3/4 дюйма. Для стенок бака потребуется теплоизоляция. Применяют минвату слоем 10 см и полиэтилен, который компенсирует отсутствие крыши. Эксперты рекомендуют применять навес, защищающий бак от влаги снаружи.

Если вас интересует пошаговая сборка солнечных коллекторов своими руками, то надо помнить, что естественное движение воды может быть неэффективным, особенно при большом расстоянии между баком и поглощающей солнце поверхностью. Чтобы компенсировать этот недостаток, целесообразно поставить насос циркуляционного типа.

Изготовление коллектора дома

Конструкцию можно соорудить из разных подручных материалов и в домашних условиях, например из старого змеевика от холодильника:

  • Очистите его полностью от фреона, соорудите реечный каркас и резиновый коврик. В каркасе предусмотрите отверстия для трубок змеевика.
  • В донной части каркаса установите коврик и накройте его фольгой.
  • Змеевик крепится болтами с хомутами сверху фольги.
  • Выведите трубки от змеевика в отверстия.
  • Каркас над змеевиком накрывают стеклом и закрепляют его.
  • Трубы из коллектора подсоединяют к баку с вентилем. Из нижнего участка бочки должна выходить труба, по которой охлажденная вода для нагрева будет выводиться к коллектору.

Система для обогрева дома и нагрева воды эффективна и может с успехом применяться на дачных участках. При необходимости устройство может быть собрано и установлено в домашних условиях самостоятельно.

Ссылка на основную публикацию