Основные виды насосов: классификация и применение

Классификация насосов по принципу действия, устройству и среде.

Содержание

Классификация насосов вследствие огромного разнообразия конструкций, областей использования, материалов и много другого является очень трудоёмкой задачей.

А если учитывать всё большее количество появляющихся с каждым днем моделей, то единая всеобъемлющая таблица, в которой будут указаны виды насосов и их классификация не представляется возможным.

Сам насос – это гидравлическая машина, которая преобразует механическую энергию приводного двигателя (например вращение электродвигателя) в энергию потока жидкости, которая необходима для перемещения жидкости и создания напора.

На практике оборудование разделяется по наиболее важным признакам.

Классификация насосов по принципу действия.

Насосы по принципу действия можно разбить на две группы:
объемные;
динамические.

Объемный тип.

В насосах объемного типа определенный объем перекачиваемой жидкости отсекается и перемещается от входного патрубка насоса к напорному, при этом жидкости сообщается дополнительная энергия, главным образом в виде энергии давления.

Насосы объемного типа подразделяются на две подгруппы:
возвратно-поступательного действия;
роторные.

В возвратно-поступательных насосах перемещение жидкости достигается за счет осевого перемещения поршня или диафрагмы в цилиндре насоса.

Цилиндр насоса с помощью клапанов попеременно соединяется с подводящим и напорным трубопроводом. Основным недостатком возвратно-поступательных насосов является неравномерность (так называемая пульсация) подачи.

Для выравнивания подачи насосы выполняют многопоршневыми и применяют воздушные колпаки.

Насосы возвратно-поступательного действия можно классифицировать по следующим признакам:
способу действия поршня-одностороннего или двустороннего действия;
положению поршня и цилиндра – горизонтальные и вертикальные;
форме поршня – дисковые, плунжерные.

Роторные насосы.

В роторных насосах один или несколько вращающихся роторов образуют в корпусе насоса полости, которые захватывают перекачиваемую жидкость и перемещают её от входного патрубка насоса к напорному.

Роторные насосы обеспечивают более равномерную подачу, в них отсутствует отсекающая клапанная система.

Наибольшее распространение получили такие конструктивные схемы роторных насосов как:
шестеренные – двух и многошестеренные, с наружным и внутренним зацеплением;
винтовые – одно и многовинтовые;
пластинчатые – одно и многопластинчатые.

Динамические насосы.

В динамических насосах приращение энергии происходит в результате взаимодействия потока жидкости с вращающимся рабочим органом. Принято подразделять такие агрегаты на две основные группы:
лопастные;
вихревые.

В лопастных насосах жидкость получает приращение энергии за счет взаимодействия с вращающейся решеткой лопастей рабочего колеса. В рабочем колесе происходит приращение потенциальной и кинетической энергии жидкости.

Кинетическая энергия в неподвижных элементах насоса (таких как отводы) превращается в энергию давления.

Обычно лопастные насосы не обладают свойством самовсасывания. Для запуска в работу необходимо будет заполнить их водой (или другой перекачиваемой жидкостью).

В вихревых насосах приращение энергии перекачиваемой жидкости осуществляется за счет турбулентного обмена энергией основного потока в канале насоса и вторичного потока в рабочем колесе.

В промышленности большее распространение получили лопастные насосы, которые по направлению потока в рабочем колесе подразделяются на центробежные( радиальные и диагональные) и осевые.

В зависимости от соотношения параметров (таких как напор, расход и число оборотов) изменяется форма проточной полости насоса, в частности рабочего колеса.

Классификация центробежных насосов по свойствам перекачиваемой жидкости.

От физико-химических свойств перекачиваемой жидкости зависит конструктивное исполнение и применяемые материалы в насосах. По этому признаку насосы делятся на следующие группы:
для чистых и слегка загрязненных нейтральных жидкостей;
для загрязненных жидкостей и взвесей;
для агрессивных и радиоактивных жидкостей;
для жидких металлов;
для эрозирующих жидкостей и твердых веществ.

В зависимости от перекачиваемой жидкости насосы подразделяются на:
холодные – перекачивающие среду с температурой не более 100 0С;
горячие – перекачивающие среду с температурой более 100 0С.

Классификация по назначению.

Один и тот же тип насосов может эксплуатироваться в различных технологических процессах – это основной принцип классификации по назначению.

Одним из примеров такой классификации центробежных насосов может служит разделение оборудования по группам на крупных промышленных объектах, например на электростанциях.

На электростанции принято подразделять оборудование на две группы:
насосы тепловой схемы;
вспомогательные агрегаты.

К первой группе относятся:
питательные насосы – они обеспечивают подачу питательной воды в котел при высокой температуре и давлении;
конденсатные – такие агрегаты необходимы для откачивания конденсата из конденсатора и подачи его к питательным насосам;
циркуляционные – используются для поддержания циркуляции в паровых котлах ТЭС и главных циркуляционных насосах;
сетевые насосы – обеспечивают работу теплофикационным сетям и подают воду с высокой температурой в отопительные системы здания;
насосы системы охлаждения – подают большое количество холодной воды для охлаждения конденсаторов и другого оборудования.

К группе вспомогательных относятся агрегаты систем химводоочистки, маслоснабжения и регулирования, насосы для уплотнений и т.п.

Классификация пожарных насосов.

Классификация центробежных пожарных насосов характеризуется набором основных параметров агрегата, таким как напор, подача, коэффициент полезного действия, высота всасывания и мощность.

Основным требованием к пожарному агрегату является высота подачи воды под давлением. Напор насоса системы пожаротушения зависит от устройства оборудования, а именно от количества рабочих колес.

Модели с одним рабочим колесом принято называть одноступенчатыми, с двумя и более – многоступенчатыми. Чем больше рабочих колес в агрегате – тем на большую высоту он способен поднять воду.

При установке системы пожаротушения в здании следует учитывать и то, что периодически потребуется проводить профилактические работы по проверке работоспособности, для того, что в случае необходимости оборудования выполнило свои функции.

Устройство и классификация насосов.

Этот вид классификации чем то похож на первый. К примеру, для насосов объемного типа классификация по устройству выглядит следующим образом:
вальный, кривошипный, кулачковый насос;
одно, двух, трех и многопоршневой насос;
оппозитный, V-образный;
одно, двух и многорядный.

Устройство вихревых насосов в большинстве случаев выполняются одноступенчатыми, консольного типа.

Виды и классификация насосов

Насос – тип гидравлической машины, который перемещает жидкость путем всасывания и нагнетания, используя кинетическую или потенциальную энергию. Насос необходим для использования в противопожарных технических средствах, для отвода жидкостей в жилых кварталах, при подаче топлива и многих других целях. По области применения, конструкции, принципу действия существует разные виды и типы насосов. При использовании насосов для различных целей необходимо знать, какие виды бывают и чем они отличаются.

Общая классификация

В первую очередь насосы делятся по области применения на бытовые и промышленные. Бытовые насосы используются в домашних хозяйствах, промышленные — на предприятиях и в специальных службах (пожарная). Отдельная классификация насосов по типу рабочей камеры предполагает деление на динамические и объемные насосы.

Виды насосов и их классификация

Различные классификации насосов основаны на понимании того, какие типы насосов существуют и чем они отличаются. Насосы делятся на несколько видов, те, в свою очередь, делятся на категории.

По техническим характеристикам:

  • в зависимости от объема жидкости, перемещаемой в единицу времени;
  • давление и напор;
  • КПД.

По области применения:

Разделение насосов по сферам применения

Область применения насосов очень широкая. Сегодня их используют практически во всех сферах: строительстве, промышленности, при добыче полезных ископаемых, при разработке систем пожаротушения. В малых масштабах также используются различные типы насосов, и область их применения варьируется от бытового использования для полива, до установки в системах водоснабжения и теплопередачи. В зависимости от сферы применения выделяют типы и виды насосов. Ниже представлены описания, их характеристики и разновидности.

Типы насосов

По целевому назначению:

  • погружные насосы;
  • поверхностные насосы.

По способу энергопитания:

  • электрические насосы;
  • жидкотопливные насосы.

В зависимости от типа воды:

  • для чистой воды;
  • для воды средней степени загрязненности;
  • для воды высокой степени загрязненности.

Типы бытовых насосов и область их применения

По области применения насосы делятся на бытовые и промышленные. Бытовые насосы бывают поверхностными и погружными. Для бытового использования чаще используют первый тип. Поверхностные насосы применяются для автономного водоснабжения частных домов, полива прилежащей территории, откачки воды из подвалов и прудов, повышения давления при автономной подаче воды в частный дом.

Существует четыре типа бытовых насосов:

Описание и характеристики насосов

Существует 2 вида насосов: поверхностные и погружные. Поверхностные насосы устанавливаются на уровне земли, в скважину или яму опускается шланг. Если насос оборудован автоматической системой включения-выключения при подаче воды, то он называется станцией. Насосы погружного типа включают в себя: дренажные насосы, фекальные, циркуляционные, насосы, установленные в колодцах и скважинах.

Разновидности насосов по конструкции

По конструкции все насосы различаются между собой. Они могут быть вертикальные и горизонтальные. Все насосы отличаются своей сборкой, в зависимости от модели в них могут быть использованы лопатки, лопасти, винты.

Классификация по принципу действия — по типу рабочей камеры

Различают типы насосов по принципу действия и конструкции. Они делятся на объемные и динамические насосы.

  1. Объемные насосы — такие, в которых жидкость перемещается за счет изменения объема камеры с жидкостью под действием потенциальной энергии.
  2. Динамические насосы – механизмы, в которых жидкость перемещается вместе с камерой под действием кинетической энергии.

Динамические насосы, в свою очередь, делятся на лопастные и струйные.

Отдельно выделяют виды объемных насосов по принципу действия в зависимости от конструкции:

  1. Роторные насосы – это цельный корпус, с определённым числом лопаток/лопастей, приходящих в движение при помощи ротора.
  2. Шестеренные насосы – самый простой тип механизма, состоящий из сцепленных между собой шестерен, приходящих в движение под принудительным изменением полости между шестернями.
  3. Импеллерные – в эксцентрический корпус заключены лопасти, при вращении выдавливающие жидкость.
  4. Кулачковые – насосы, в корпус которых заключены 2 ротора, которые при вращении перекачивают жидкости разной степени вязкости.
  5. Перистальтические – корпус включает эластичный рукав, в котором находится жидкость. При вращении дополнительных валиков жидкость перемещается по рукаву.
  6. Винтовые – насосы, состоящие из ротора и статора. При вращении ротора жидкость начинает перемещаться по оси насоса.

Существует также деление динамических насосов по принципу действия:

  1. Центробежные – включает в себя рабочее колесо, внутри которого находится жидкость, при вращении колеса, частицы приобретают кинетическую энергию, начинает действовать центробежная сила, под действием которой жидкость переходит в корпус мотора.
  2. Вихревые насосы – по принципу действия аналогичны центробежным, но менее габаритны и имеют более низкий КПД.
  3. Струйные – основаны на переходе потенциальной энергии в кинетическую.

Вихревый тип насоса является наиболее часто используемым за счет легкости установки. В бытовых нуждах такой агрегат устанавливают в загородных домах для обеспечения подачи воды. Циркуляцию воды обеспечивает жидкость, подаваемая на лопатки, расположенные в корпусе насоса. Ключевым элементов здесь является колесо, на которое вода подается через входное отверстие. Также такой насос используют для скважин, так как создают высокое давление. Они обладают способностью самовсасывания и могут перерабатывать не только жидкость, но газо-водную смесь.

Читайте также:  Инструкция по утеплению фасадного остекления балкона

Насосы центробежного типа часто применяют в бытовых и промышленных целях:

  • для организации систем водоснабжения на промышленных предприятиях;
  • для организации систем водоснабжения жилых кварталов;
  • для систем полива.

Эти насосы отличаются простотой эксплуатации, так как принцип работы достаточно прост. Основную нагрузку принимает колесо с лопатками, на которое и подается жидкость, однако если жидкости внутри не будет, то насос выйдет из строя. Чаще такие насосы бывают поверхностными. За счет этого снижается их производительность. Погружные насосы центробежного типа требуют герметичность корпуса высокого качества.

Классификация по назначению

По назначению различные виды насосов используют в промышленных целях (в пищевой, химической, бумажной промышленности). В бытовых целях насосы используются при строительстве, откачке воды из скважин и колодцев, для бурения колодца, для теплоснабжения. Бурение колодца требует использования насосной станции или насоса погружного типа. Насос обеспечивает подачу воды из скважины под небольшим давлением.

В автомобилях и промышленных машинах насосы являются вспомогательными устройствами.

При добыче полезных ископаемых используют различные типы насосов для бурения скважины, обустройства прилежащей к скважине территории, откачки жидкости, для переработки жидкостей. В промышленности насосы устанавливаются на предприятиях для гидроудаления отходов производства.

Насосы, применяемые в пищевой индустрии, часто имеют устройства для измельчения материалов (кроме камня и металлов), чтобы предотвратить засорение трубопровода.

Отдельно выделяют насосы для пожаротушения. Конструкция таких насосов предусматривает подачу воды под сильным давлением.

Дренажные насосы относятся к погружным, они характеризуются наличием системы измельчения и фильтрации.

Насосы, нагнетающие давление используются в системах, где требуется повышение давления при работе (теплоснабжение, водоснабжение).

Выделяют виды водяных насосов по назначению:

В зависимости от сферы использования существует классификация водяных насосов по принципу действия.

  1. Водоподъемные насосы используются для экстракции жидкости из скважин или колодцев.
  2. Циркуляционные виды насосов используют для перемещения жидкости в системах отопления, кондиционирования и подачи воды.
  3. Дренажные насосы используют для откачивания жидкости из подвалов и канализации.

Классификация по виду перекачиваемой среды

В зависимости от того, какого типа жидкость будет проходить через насос, конструктивные и другие особенности будут различаться.

Насосы используют для перекачивания:

  • чистой жидкости и жидкости малой загрязненности;
  • жидкостей средней степени загрязненности с примесями легкой взвеси;
  • не сильно загазованных жидкостей;
  • смесей газа и жидкости;
  • агрессивных жидкостей;
  • жидких металлов.

Для работы с разными типами жидкости используют насосы объемного типа. Этот вид насосов работает по принципу изменения объема камеры, что приводит к переходу энергии двигателя в энергию субстанции. Такие насосы способны работать с любыми средами, однако следует учитывать высокий уровень вибрации.

Динамические насосы могут также работать с любыми типами жидкостей, однако они не обладают способностью к самовсасыванию. В зависимости от конструктивных особенностей насосов существуют различные способы переработки перемещаемой жидкости. Например, вихревые насосы динамического типа не предназначены для работы с загрязненной жидкостью, включающей абразивные вещества. Для таких агрегатов жидкость с примесями является разрушающей, приводя к истончению стенок насоса.

Виды промышленных насосов

В промышленности используются насосы разных типов. Основные виды насосов, используемые на различных предприятиях:

  • многоступенчатые;
  • маслонасосы шестеренные;
  • насосы химические погружные;

Промышленные насосы используются в различных областях

  • в легкой промышленности;
  • в химической промышленности;
  • в строительстве;
  • в машиностроении;
  • при добыче полезных ископаемых.

Вид и тип насоса выбирается в зависимости от нужд предприятия, свойств и качества перекачиваемой жидкости.

К наиболее популярным относятся глубинные насосы, так как широко используются в бытовых и промышленных целях. Их легко монтировать при установке систем водоснабжения и отопления, они используются для забора воды из скважин, в отопительных системах.

Основные виды насосов по типу подводимой энергии:

  • насосы, работающие за счет механической энергии;
  • водоструйные насосы;
  • насосы, работающие за счет сжатого пара или газа.

К насосам, работающим за счет механической энергии, относятся поршневые насосы, пропеллерные, винтовые, центробежные и ротационные. Несмотря на одинаковый принцип действия, эти насосы сильно отличаются по конструкции. Водоструйные насосы – элеваторы, эжекторы, работают за счет подачи жидкости на лопасти колеса.

Насосы для систем пожаротушения

Основным требованием к насосам системы пожаротушения является подача воды под высоким давлением. Наиболее часто используемыми являются центробежные насосы, так как они позволяют быстро закачать воду за счет центробежной силы. Важными пунктами при выборе насоса для пожаротушения являются:

  • напор;
  • частота вращения колеса;
  • КПД;
  • высота всасывания;
  • объем перемещаемой воды.

В зависимости от количества колес с лопастями насосы бывают одноступенчатыми и многоступенчатыми. Многоступенчатые агрегаты позволяют создать более высокое давление, что в свою очередь, влияет на напор и высоту подаваемой жидкости. При установке систем пожаротушения в зданиях стоит учитывать, что оборудование необходимо периодически проверять, так как застой может вызвать затруднения при запуске. На пожарных машинах устанавливают центробежные насосы и вспомогательные агрегаты. Вспомогательные насосы заполняют корпус центробежного насоса жидкостью и отключаются автоматически.

Масляные и топливные насосы

Среди промышленных типов насосов выделяют масляные и топливные устройства, устанавливаемые на двигателях автомобилей и машин и двигателях внутреннего сгорания.

Масляные насосы обеспечивают снижение силы трения между взаимодействующими частями двигателя. Они бывают регулируемыми и нерегулируемыми. В двигателях автомобиля устанавливаются роторные или шестеренные насосы для перекачивания масла.

Топливные насосы устанавливаются в автомобилях в обязательном порядке. Они обеспечивают доставку топлива из бака в камеру сгорания. В зависимости от конструкции топливные насосы бывают: механические и электрические.

Погружные насосы

Погружные насосы применяются при работе на глубине более восьми метров. Все типы погружных насосов обладают системой охлаждения, а также выполнены из прочного материла, помогающего избежать деформации под давлением. Погружные насосы бывают центробежными и вибрационными. В насосах второго типа жидкость всасывается с помощью вибрационного или электромагнитного механизма.

При выборе насоса важно учитывать большое количество факторов:

  • цель использования;
  • место использования;
  • необходимость установки вспомогательных агрегатов;
  • габариты насоса;
  • способ работы насоса.

КЛАССИФИКАЦИЯ НАСОСОВ

Под насосами в общем случае понимают энергетические машины или установки, которые для перемещения перекачиваемой среды (жидкой, твердой и газообразной) при статическом или динамическом воздействии увеличивают ее давление или кинетическую энергию.

Историческое развитие насосостроения как способа транспортирования химических и физических веществ, а также постоянно возрастающие требования к параметрам износостойкости, всасывающей способности и специальные условия монтажа привели к большому количеству типов, которые обусловили разные определения понятий и типов насосов. В результате возникали случаи, когда заказчик, разработчик и поставщик применяли три различных определения для одного и того же насоса.

Для устранения этого очевидного недостатка была разработана система классификации насосов, по конструктивным признакам и принципу действия, а также по виду перекачиваемой жидкости.
Насосы по принципу действия подающего элемента подразделяют на насосы возвратно-поступательного действия, роторные и динамические.

НАСОСЫ ВОЗВРАТНО-ПОСТУПАТЕЛЬНОГО ДЕЙСТВИЯ

Перемещение жидкости происходит в результате осевого двиижения поршня или мембраны в цилиндре насоса, который через всасывающий и нагнетательный клапаны периодически соединяется с подводящим и напорным трубопроводами. При увеличении рабочего объема насоса вследствие движения поршня или мембраны жидкость всасывается через всасывающий клапан или вентиль, а при обратном ходе поршня из-за уменьшения рабочего объема через нагнетательный клапан или вентиль вытесняется в напорный трубопровод.
По виду вытеснителя насосы подразделяют на поршневые и мембранные (рис. 1).

Признаками классификации поршневых насосов могут служить:

а) способ действия поршня (рис. 2);
б) положение поршня и цилиндра (рис. 3);
в) форма поршня (рис. 4);
г) вид привода (рис. 5).

Соответственно этому различают насосы простого или двойного действия, горизонтальные или вертикальные, радиальные или аксиальные, клапанные, крыльчатые, дисковые, плунжерные многоступенчатые с рычажным, кулачковым приводом или с качающимся приводным диском, а также прямодействующие.

Мембранные насосы классифицируют по расположению и колиичеству мембранных цилиндров, а также по типу привода.

РОТОРНЫЕ НАСОСЫ

Роторные насосы работают главным образом по принципу вытеснения, причем один или несколько вращающихся поршней или винтов образуют друг с другом в цилиндре насоса рабочие полости, причем размеры полости всасывания наибольшие, а наапорной полости – наименьшие; поэтому жидкость из полости всасывания и выталкивается в напорную полость. Однако некоторые роторные насосы имеют постоянные рабочие полости (объем вытеснения) как на входе, так и на выходе.

Принципиальные различия и некоторые преимущества роторных насосов над поршневыми заключаются:

а) во вращающихся поршнях;
б) в отсутствии клапанов в цилиндрах;
в) в уравновешивании масс или моментов.

По конструктивному исполнению рабочих органов все роторные насосы делят на пять основных типов, а именно: шестеренные, винтовые, коловратные, пластинчатые, роликовые. На рис. 6 приведены эти типы роторных насосов.

Шестеренные насосы (рис. 7) подразделяют в основном по числу шестерен (на двух- и многошестеренные), по типу зацепления (с наружным и внутренним зацеплением) и по числу потоков жидкости (на одно- и многопоточные насосы).

Как видно по рисункам, жидкость, попадая в межзубчатые пространства зубчатых колес, перемещается от входной к напорной полости насоса. Взаимное зацепление зубьев, а также малые радиальные и торцовые зазоры между шестернями и корпусом уменьшают протечки перекачиваемой жидкости.

Винтовые насосы подразделяют в основном по количеству рабочих органов на одно- и многовинтовые, а по направлению потока жидкости на одно- и двухпоточные винтовые (рис. 8). В противоположность шестеренным насосам процесс перемещения жидкости в винтовых насосах происходит в осевом направлении по свободным межвинтовым полостям от стороны всасывания к напорной стороне.

Коловратные насосы выпускают в настоящее время самых различных конструкций. Для конструкции этого вида xapaктерны так называемые двухвальные насосы с одно- или многоопрофильными роторами различной формы поперечного сечения (рис. 9). Почти все коловратные насосы перемещают перекачиваемую жидкость от стороны всасывания к напорной стороне без изменения объема полости вытеснения.

Пластинчатые насосы – типичные представители одновальных насосов, по принципу действия подразделяют на простого и двойного действия (рис. 10), а по виду ротора на одно- и многоопластинчатые насосы (шиберные).

Рабочий процесс этих типов характеризуется изменяющимся (серповидным) рабочим объемом полостей всасывания и напора. Уплотнение между входным и напорным патрубками осуществляется плоскими пластинами или лопатками, помещенными в пазах ротора, при минимальных радиальных и торцовых зазоорах между ротором и корпусом.

Роликовые насосы подразделяют только по принципу действия на одно- и двукратного действия (рис. 11). В данном случае эффект нагнетания обусловливается вращающимися поршнями, эксцентрично расположенными в корпусе, которые приводят эластичную оболочку в колебательное движение и перемещают жидкость вследствие быстрого изменения (пропорционально частоте вращения) рабочего объема полостей всасывания и напора.

Читайте также:  Как погладить шторы из органзы, не испортив?

ДИНАМИЧЕСКИЕ НАСОСЫ

В отличие от поршневых и роторных эти насосы работают по динамическому принципу. В результате вращения рабочих колес внутри рабочего пространства насоса кинетическая энергия от рабочего колеса передается перекачиваемой жидкости, которая в последующих элементах (диффузоре, направляющем аппарате, спирали) в большей части преобразуется в энергию давления.

По принципу действия насосы прежде всего подразделяют на лопастные и вихревые (рис. 12). Если лопастной насос не обладает, как правило, свойством самовсасывания, то вихревой – обычно работает по принципу самовсасывания. Кроме того в вихревых насосах в подавляющей степени происходит непрямой обмен энергии между вторичным потоком жидкости, находящейся в рабочем колесе, и перекачиваемой жидкостью в боковом канале корпуса насоса.

Лопастные насосы подразделяют:
по направлению потока на выходе из рабочего колеса – на центробежные насосы радиального, диагонального типов и на осевые (рис. 13);
по прохожденио жидкости за рабочим колесом – с направляяющим аппаратом, спиральным или кольцевым отводом;
по направлению потока жидкости в рабочем колесе или между рабочими колесами – на одно- и двухпоточные (рис. 14).

В многооступенчатых насосах применяют одностороннее или симметричное расположение рабочих колес (рис. 15).

В заключение следует еще указать на деление, или классифиикацию, насосов по всасывающей способности:

самовсасывающие, частично самовсасывающие (с предвключенными ступенями всасыывания или всасывающими устройствами) и не самовсасывающие.

Вихревые насосы по форме рабочего колеса можно классифиицировать на открытые (звездообразные), закрытые (с периферийнообоковым каналом) и чисто вихревые (рис. 16), а по прохождению потока на одно- и многоступенчатые насосы.

СПЕЦИАЛЬНЫЕ НАСОСЫ

К этой группе относятся прежде всего небольшие насосы, которыe по классическим признакам (наличие вращающегося или перемещающегося вдоль оси рабочего органа) нельзя отнести к обычным насосам.

Струйные насосы (рис. 17) характеризуются наличием трубы Вентури, в центр которой подводится струя рабочей среды (вода, пар или газ). Рабочая струя образует пограничный слой и вследствие высокой скорости вначале захватывает частички окружающего воздуха, а затем вследствие обменных процессов всасывает перекачиваеемую жидкость из подводящего трубопровода. Пневматические насосы (газлифты) подают жидкость в результате образования водовоздушной смеси малой плотности при поступлении воздуха под давлением в зааглубленную под уровень жидкости трубу. Окружающая жидкость большей плотности проникает во всасывающую трубу, обеспечивая тем самым процесс подъема жидкости (рис. 18).

Электромагнитный насос (рис. 19), предназначенный главным образом для перекачивания жидкого металла, создает по так называемому правилу правой руки осевую силу в перекачиваемой жидкости, которую можно рассматривать в качестве движущегося проводника в магнитном поле. Вследствие этого создаются услоовия для перемещения жидкости.

КЛАССИФИКАЦИЯ ПО ВИДУ ПЕРЕКАЧИВАЕМОЙ СРЕДЫ

От физических и химических свойств перекачиваемой среды неизбежно зависят конструкции насоса, принцип его работы, а также выбор материала. На этом основании вид перекачиваемой среды пелесообразно принять в качестве второго признака для классификации насосов. Поэтому определены шесть типичных перекачиваемых сред для насосов. В соответствии с этим насосы предназначены для чистых и слегка загрязненных жидкостей, загрязненных жидкостей и взвесей, легко загазованных жидкостей, газожидкостных смесей, агресссивных жидкостей, жидких металлов.

КЛАССИФИКАЦИЯ ПО НАЗНАЧЕНИЮ

На практике довольно часто встречаются насосы разных типов, названия которым даны в зависимости от особенностей их эксплуатации. Так, например, различают питательные, циркуляционные, конденсатные насосы, если речь идет о насосах для тепловых электростанций.

К циркуляционным или насосам охлаждения относятся насосы, которые, как правило, работают в замкнутых системах. Под реакторными насосами подразумевают в настоящее время главные циркуляционные насосы, которые включены в первичный контур реактора атомной электростанции.

Судовые центробежные или поршневые трюмные насосы используют в судостроении.

В погружных насосах или насосах с мокрым или защищенным электродвигателем, последний размещают в перекачиваемой среде. Общеизвестные гидравлические насосы, относящиеся к этим типам и устанавливаемые в гидравлические системы, являются не только подающими машинами, но и источниками напорного потока жидкости.

Классификацию по назначению следует применять лишь в том случае, когда недостаточно первых двух признаков (классификация по принципу действия и по перекачиваемой среде) для четкой характеристики определенного типа насоса.

Центробежные насосы

Центробежные насосы являются самыми распространённым насосами в мире. Благодаря своей конструкции и стабильной работе этот тип насосов нашел широкое применение, как для решения бытовых задач, так и для основных технологических процессов в самых различных отраслях промышленности. В данной статье будет дано полное описание центробежных насосов, рассказано как работает центробежный насос, его классификация и основные области использования.

Принцип действия центробежного насоса

Основным элементом центробежного насоса является рабочее колесо (импеллер), расположенное внутри спирального корпуса (улитка), которое имеет лопасти, направленные в обратную сторону относительно вращению самого колеса. Импеллер устанавливается на вал, который соединен с приводом насоса. При старте работы агрегата рабочее колесо начинает вращаться, и жидкость через всасывающий патрубок поступает вдоль оси вращения колеса.

Под действием центробежной силы, жидкость перемещается по каналам между лопастями в радиальном направлении (от центра импеллера к его периферии) в спиральную камеру корпуса насоса, а затем и в нагнетательный патрубок насоса. На периферии рабочего колеса располагается зона повышенного давления. В центре же давление понижено, что обеспечивает постоянное поступление жидкости в насос.

Конструкция центробежных насосов

Центробежный насос состоит из следующих основных частей:

  • Всасывающий патрубок
  • Нагнетательный патрубок
  • Спиральный корпус (проточная часть насоса)
  • Рабочее колесо (импеллер)
  • Уплотнение вала
  • Картер насос

Классификация центробежных насосов

Центробежные насосы можно классифицировать по конструктивным исполнениям его основных элементов, по типу установки и назначению.

По расположению патрубков насосов

  • Насос «ин-лайн» типа. У данного типа насоса всасывающий и нагнетательный патрубок находятся на одной линии друг напротив друга. Перекачиваемая жидкость проходит сквозь насос. Насос устанавливается на прямых участках трубопровода.

Насос ин-лайн

    • Консольные насосы. Жидкость поступает в центр рабочего колеса (импеллера). Патрубки расположены под 90˚С относительно друг друга.

    Консольные насосы

    По количеству ступеней насоса

    • Одноступенчатый насос. Насос с одним рабочим колесом на валу. Данные насосы используются при задачах, где не требуется обеспечивать высокий напор. Максимальный напор у одноступенчатых насосах обычно не превышает.

    Одноступенчатый насос

  • Многоступенчатый насос имеет на валу более одного последовательно соединённых колес. Такой тип насосов используется для обеспечения высокого напора при сравнительно небольшом расходе. Высокий напор создается благодаря сумме напоров, создаваемых каждым отдельным колесом. Перекачиваемая жидкость переходит последовательно от одной ступени к другой.
  • Многоступенчатый насос

    По типу уплотнения вала

    Для защиты от попадания перекачиваемой жидкости в окружающую среду и в механическую часть центробежного насоса используются различные уплотнительные системы. По типу применяемой системы насосы можно разделить на:

    • Центробежные насосы с сальниковым уплотнением (ссылка на сальниковое уплотнение)
    • Центробежные насосы с торцевым уплотнением (одинарным или двойным) (ссылка на торцевое уплотнение)
    • Центробежные насосы с магнитной муфтой (ссылка на магнитную муфту)
    • Центробежные насосы герметичные с мокрым ротором (ссылка на мокрый ротор)
    • Центробежные насосы с динамическим уплотнением (ссылка на динамическое уплотнение)

    По типу соединения с электродвигателем

    Центробежные насосы разделяются также по типу соединения гидравлической части насоса с электродвигателем. Выделяют типы:

      Насос с соединительной муфтой. Упругая муфта — это элемент, позволяющий соединить вал электродвигателя и вал, на котором крепится рабочее колесо. Для этого используется, как обычная муфта, так и муфта с промежуточным элементом. Использование промежуточного элемента позволяет не отсоединять электродвигатель при техническом обслуживании насоса, например при замене торцевого уплотнения.

      Обычная муфта

      Муфта с промежуточным элементом

      Моноблочный насос. У данного типа насосов рабочее колесо крепится либо сразу на удлиненном валу электродвигателя, либо для соединения вала двигателя и насоса используется неподвижная постоянная глухая муфта. Центробежный насос с глухой муфтой

      По назначению

      Благодаря своим конструкционным возможностям назначение центробежного насоса может быть самым различным. По данному показателю выделяют следующие типы центробежных насосов:

      • Дренажные
      • Скважинные
      • Фекальные
      • Шламовые
      • Пищевые
      • Санитарные
      • Пожарные
      • Самовсасывающие

      Материальное исполнение центробежных насосов

      Центробежные насосы применяются практически во всех отраслях промышленности, перекачивают самые различные жидкости, начиная с воды и заканчивая высоко агрессивными и абразивными суспензиями.

      Поэтому выбор материалов для основных элементов центробежных насосов очень широкий и чаще всего он основывается на стойкости данного материала к свойствам перекачиваемой жидкости (ссылка на таблице хим. стойкости) и условиям работы самого насоса.

      Можно выделить следующие основные материалы:

      Металлическое исполнение

      • Чугун
      • Бронза
      • Углеродистая сталь
      • Нержавеющая сталь
      • Дуплекс
      • Супер-дуплекс
      • Титан
      • И.т.д

      Футерованные и пластиковые исполнения

      При работе с высоко агрессивными жидкостями, например с кислотами, металлическое исполнение не всегда может обеспечить необходимой коррозионной защиты. Либо применения сверхстойких сплавов может привести к значительному удорожанию всей конструкции.

      Поэтому широкое распространение приобрело использования самых различных пластиков, в качестве основного материала контактирующего со средой в центробежных насосах.

      Можно выделить два основных типа:

      • Футерованные насосы. Футеровка – это процесс нанесения пластикового покрытия на металлический корпус насоса. Все элементы контактирующие с перекачиваемой средой покрыты слоем полимера, что значительно увеличивает коррозионною устойчивость всей проточной части. Современные технологии обеспечивают отличное сцепление между покрытием и корпусом, т.к при отливке полимер заполняет все полости и зазоры.

      • Пластиковые центробежные насосы. Основные элементы насоса, контактирующие со средой, выполнены из цельного пластика, обработанного на специальных станках.

      Материалы для футерованных и пластиковых насосов:

      • PP — полипропилен
      • PVDF- поливинилденефлуорид
      • PE – полиэтилен
      • PVC – поливинилхлорид
      • PFA – перфторалкоксил
      • PTFE – политетрафторэтилен
      • ETFE – этилентетрафторэтилен (Tefzel)
      • FEP – фторэтиленпропилен

      Материалы уплотнительных колец

      В качестве уплотнительных колец в центробежных насосах чаще всего используют следующие эластомеры:

      • EPDM — Этилен-пропиленовые каучук
      • NBR — Бутадиен-нитрильный каучук
      • FPM/FKM/Viton — Фторкаучук
      • FFKM — Каучук перфторированный

      Преимущества и недостатки центробежных насосов

      Преимущества:

      • Простая конструкция
      • Немного движущихся частей, большой срок службы
      • Высокий КПД
      • Высокие показатели производительности
      • Постоянная подача, без пульсаций
      • Регулировка производительности с помощью дроссельного клапана на линии нагнетания или частотного преобразователя

      Недостатки

      • Невозможность «самовсасывания»
      • Большой риск кавитации
      • Производительность сильно зависит от напора
      • Наиболее эффективны только в одной заданной рабочей точке. При регулировании подачи с помощью частотного преобразователя эффективность понижается
      • Не может работать с мультифазными жидкостями с содержанием воздуха или газа
      • При перекачки абразивных жидкостей возможный быстрый износ основных элементов из-за высокой скорости вращения рабочего колеса (около 1500 об/мин).
      • Не может работать с высоковязкими жидкостями (макс. 150 сСт)

      Области применения

      Центробежные насосы применяются практически во всех отраслях промышленности.

      Основные из них:

      Водоснабжение и водоотведение

      Нефтяная и газовая промышленность

      Основные производители

      Крупных игроков на рынке центробежных насосов можно также разбить по отраслям в которых они наиболее сильны:

      ¸Классификация насосов

      К числу нагнетателей, получивших распространение в водоснабжении и водоотведении, относятся::

      1. лопастные насосы: центробежные, диагональные, осевые, вихревые;

      2. поршневые насосы

      3. роторные нагнетатели (винтовые, шестеренчатые)

      4. воздушные водоподъемники

      5. струйные насосы (нагнетатели)

      Наибольшее распространение получили – центробежные насосы.

      Принцип действия насоса легко уяснить по рис.1.

      Центробежный насос – не герметичная машина.

      Для обеспечения герметичности насоса – его заливают водой. (способы заливки различные: из водопровода, вакуум насосом, из напорного резервуара).

      При вращении рабочего колеса жидкость, заполняющая рабочее колесо, также начинает вращаться, приобретая при этом центробежную силу. Под действием этих сил частицы жидкости устремляются от центра к периферии по радиусу. Чем больше радиус колеса R и частота его вращения n, тем больше скорость движения жидкости, тем с большей скоростью частицы жидкости устремляются к напорному патрубку насоса. Объем заполняемый жидкостью опорожняется и в нем создается пониженное давление – вакуум. Под действием атмосферных сил вода из расходной емкости по всасывающей трубе поступает на лопасти колеса в зону пониженного давления. И цикл повторяется.

      Корпус насоса имеет форму улитки и служит для преобразования кинетической энергии жидкости в потенциальную (зона расширения корпуса), а также для гашения поперечных сил (осевые силы и поперечные или радиальные силы).

      Поршневой насос – герметичная машина, поэтому не требует заливки. Он может нагнетать как жидкости, так и газы (Объемные насосы вытеснения).

      Основные конструкционные элементы насоса:

      К роторным нагнетателям относятся такие насосы, которые, как и поршневые, перемещают жидкость за счет ее вытеснения. Только у поршневого наоса рабочий орган имеет возвратно-поступательное движение, а у роторных – рабочие органы вращаются по окружности и этих органов больше, чем количество поршней.

      Примером роторного нагнетателя может служить шестеренчатый насос:

      За счет герметичного защемления зубьев шестерен друг с другом рабочая камера насоса делится на две части: всасывающую и напорную. Во всасывающей камере зубья попеременно вытесняют находящуюся там среду (масла, жидкости). Создавая тем самым вакуум, а в напорной части создают избыточное давление за счет поступления вытесняемой среды.

      Примерно по этому же принципу работают винтовые насосы (один ведущий и два ведомых винта), пластинчатый насос.

      Вихревой насос.

      Принцип действия вихревых наосов основан также на передаче энергии от лопасти к потоку жидкости.

      1 –рабочее колесо с радиальными лопастями. 2 – кольцевой канал

      6ºА – окно в боковой части корпуса.

      Жидкость поступает на лопасти рабочего колеса, через окно А. Рабочее колесо представляет собой своеобразное центробежное колесо с радиальными лопастями. Вокруг периферии колеса в корпусе насоса выполнен кольцевой канал, заканчивающийся напорным патрубком. Область входных каналов отделяется от напорного патрубка участком, плотно прилегающим к колесу (радиальный зазор) не более 0,2 мм и служащим уплотнением.

      Жидкость, вошедшая через входное отверстие в насос, попадает межлопастные пространства, в которых ей сообщается механическая энергия. Центробежные силы выбрасывают ее из колеса. В кольцевом канале жидкость движется по винтовым траекториям и через некоторое расстояние вновь поступает в межлопастное пространство, где снова получает приращение механической энергии.

      Таким образом, в корпусе работающего насоса образуется своеобразное кольцевое вихревое движение, от которого насос и получил название вихревого. Многократность приращения энергии частиц жидкости приводит к тому, что вихревой насос при прочих равных условиях создает значительно больший напор, чем центробежный. Наличие уплотняющего участка позволяет насосу перекачивать газы.

      Недостаток – низкий КПД – 40-50-%

      Воздушные водоподъемники бывают двух типов:

      -вытеснители (монтжю, пульсометры, джаты, нагнетатели Кремера)

      Вытеснители применяются для перемещения загрязненных или агрессивных жидкостей. Состоят: из приемника – куда подводится жидкость, компрессора, нагнетательной трубы, которая присоединяется к верхней части приемника.

      Под действием сжатого воздуха жидкость по напорной трубе вытесняется на желаемую высоту.

      Эрлифты – применятся для извлечения воды из глубоких трубчатых колодцев.

      Рис. 2. Воздушный подъемник

      а—схема устройства; – б—напорная характеристика; /—приемный бак; 2—воздушная труба от компрессора; 3—водоподъемная труба; 4—обсадная труба скважины; 5—форсунка

      Водоподъемная труба (3) спущена под уровень воды в колодец . Воздушная труба (2) подводит сжатый воздух от компрессора в нижнюю часть водоподъемной трубы с помощью дырчатого распределителя воздуха (5). Сжатый воздух, растворяясь в воде, насыщает воду. Благодаря чему удельный вес водовоздушной смеси внутри водоподъемной трубы оказывается меньше, чем удельный вес воды в колодце. Регулируя количество подаваемого воздуха, можно добиться того, что водовоздушная смесь начнет подниматься по трубе и выливаться в емкость.

      Недостаток – низкий КПД – 20-30%

      Струйные водоподъемники работают по принципу использования энергии рабочей среды для перемещения жидкости.

      В качестве рабочей среды могут выступать: вода, пар, газ.

      Если газ – то эжектор. Вода – гидроэлеватор

      Рис. 3. Водоструйный насос

      а—схема устройства: /—всасывающий трубопровод; 2—труба; 3—сопло; 4—подводящая камера; 5—камера смешения; 6—диффузор; 7—напорный трубопровод; б—теоретическая расходно-напорная характеристика

      В водоструйных – гидроэлеваторах – рабочая жидкость (вода) под высоким напором h по трубе 2 поступает в насадку, а из нее в сужающую часть трубы – 4, где скорость движения жидкости возрастает за счет энергии рабочей жидкости. При увеличении скорости в сечении 1-1 падает давление и в это место устремляется поток жидкости из резервуара под действие атмосферного давления.

      Краткие сведения о насосах и их классификация

      Насосами называются гидравлические машины, предназначенные для перемещения жидкостей и сообщения им механической энергии.

      Насосы являются одной из самых распространенных разновидностей гидравлических машин. Они применяются для наружного водоснабжения (в том числе и противопожарного) населенных пунктов и предприятий, внутреннего водоснабжения жилых, общественных и производственных зданий, для подачи воды на пожаротушение автонасосами, мотопомпами, для подачи воды и огнетушащих составов в установках пожаротушения, в системах смазки, топливоподачи и гидропривода пожарных автомобилей и для многих других целей. Насосы подразделяются на две основные группы: объемные и динамические. Объемными называются насосы, в которых жидкость перемещается путем периодического изменения объёма камеры, попеременно сообщающейся со входом и выходом насоса. Динамическими называются насосы, в которых под воздействием гидродинамических сил перемещается с камерой (незамкнутом объеме) жидкость, постоянно сообщающейся со входом и выходом насоса. К ним относятся струйные и лопастныенасосы.

      Весьма наглядной является классификация насосов по принципу действия, вне зависимости от вида перемещаемой жидкости (рис. 9.1).

      Действие объемных насосов основано на изменении потенциальной энергии перемещаемой жидкости, а струйных и лопастных – на изменении кинетической энергии.

      Рис. 9.1. Классификация насосов

      Насосы классифицируются не только по принципу действия, но и по конструктивному исполнению, назначению, отраслевому применению, величине подачи и напора и т.д.

      Рассмотрим основные схемы насосов.

      Поршневой насос (рис. 9.2) в простейшем виде представляет собой расположенный в цилиндрическом кожухе поршень, при движении которого в одну сторону жидкость через всасывающий клапан поступает в рабочую камеру, а при движении в другую сжимается и затем выталкивается через нагнетательный клапан.

      Положительными качествами поршневых насосов являются: высокий КПД, возможность получения больших давлений, независимость подачи от создаваемого давления, запуск без предварительной заливки всасывающих линий (самовсасывающие). Недостатками – громоздкость и затруднитель-ность непосредственного соединения с электродвигателем, наличие клапанов, неравномерность подачи, вызывающая вибрацию, сложность регулировки. Скорость поршня таких насосов ограничена действием инерционных сил.

      Рис. 9.2. Поршневой насос

      К насосам возвратно-поступательного действия, кроме поршневых относятся также мембранные (диафрагменные) насосы(рис. 9.3), которые нашли распространение в системах топливоподачи автомобилей (в том числе и пожарных).

      Рис. 9.3. Мембранный насос

      К роторным насосам относятся пластинчатые, зубчатые (шестеренные), винтовые, червячные и др. Они представляют собой объемные насосы с вращающимся ротором без всасывающих и напорных клапанов и вследствие отсутствия возвратно-поступательного движения их можно непосредственно соединять с высокооборотными электродвигателями.

      Типичным представителем роторных насосов является пластинчатый насос (рис. 9.4).

      В простейшем виде он представляет собой эксцентрично расположенный в цилиндрическом корпусе 2 ротор 1, в пазах которого находятся пластины 3, отжимаемые от центра к периферии действием центробежной силы. При вращении цилиндра 1 пластины 3 производят всасывание жидкости через приемный патрубок 4, сжатие ее и нагнетание через напорный патрубок 5. Насос является реверсивным: при изменении направления вращения его вала изменяется направление движения жидкости в трубопроводах, присоединенных к насосу.

      Рис. 9.4. Пластинчатый насос роторного типа

      Зубчатый насос состоит из пары сцепленных между собой шестерен, расположенных в открытом с двух сторон кожухе (рис. 9.5), с минимальным зазором между зубьями и кожухом. Зубья при вращении захватывают жидкость и переносят её со стороны всасывания в сторону нагнетания. Эти насосы получили распространение в системах смазки при перекачки вязких жидкостей (масел).

      Струйные насосы используются в пожарной охране для заполнения всасывающих линий пожарных насосов, для подачи воды на пожар при расположении насоса более 7 м над уровнем воды, для уборки воды из помещений после тушения пожара. Принципиальная схема насоса струйного типа, его работа и основы расчета приведены в гл. 3.

      В противопожарном водоснабжении наиболее распространены центробежные насосы. В дальнейшем мы подробно рассмотрим устройство и принцип действия центробежных насосов (рис. 9.12), их классификацию.

      Рис. 9.5. Зубчатый насос

      Отметим только, что их широкое распространение объясняется высоким КПД, компактностью и сравнительной простотой в конструктивном отношении, ремонтопригодностью и удобством эксплуатации. Их можно непосредственно соединять с электродвигателями, легко регулировать, они имеют плавную, без толчков, подачу.

      У осевых насосов (рис. 9.6) лопасти 1 закреплены на втулке 2 под некоторым углом к плоскости, нормальной к оси. При вращении лопасти взаимодействуют с потоком жидкости, сообщая ей энергию и перемещая её вдоль оси насоса.

      Рис. 9.6. Осевой насос

      На рис. 9.7 дана схема вихревого насоса. Жидкость поступает через патрубок 1 на периферию рабочего колеса с лопастями 2 и, получая от них энергию при движении по концентрическому каналу 3, отводится в напорный патрубок 4.

      Характерной особенностью вихревого насоса являются подвод и отвод жидкости на периферии рабочего колеса по касательной к нему. Недостаток вихревых насосов – невысокий КПД. Осевые и вихревые насосы обладают реверсивностью, т.е. способностью изменять направление подачи при изменении направления вращения.

  • Ссылка на основную публикацию